python (3.11.7)

(root)/
lib/
python3.11/
__pycache__/
fractions.cpython-311.pyc

eodZddlmZddlZddlZddlZddlZddlZdgZej	j
Zej	jZ
ejdejejzZGddejZdS)z/Fraction, infinite-precision, rational numbers.DecimalNFractiona
    \A\s*                                 # optional whitespace at the start,
    (?P<sign>[-+]?)                       # an optional sign, then
    (?=\d|\.\d)                           # lookahead for digit or .digit
    (?P<num>\d*|\d+(_\d+)*)               # numerator (possibly empty)
    (?:                                   # followed by
       (?:/(?P<denom>\d+(_\d+)*))?        # an optional denominator
    |                                     # or
       (?:\.(?P<decimal>d*|\d+(_\d+)*))?  # an optional fractional part
       (?:E(?P<exp>[-+]?\d+(_\d+)*))?     # and optional exponent
    )
    \s*\Z                                 # and optional whitespace to finish
cleZdZdZdZd.ddfdZedZed	Zd
Z	d/dZ
ed
ZedZ
dZdZdZdZeeej\ZZdZeeej\ZZdZeeej\ZZdZeeej\Z Z!dZ"ee"ej#\Z$Z%dZ&ee&e'\Z(Z)dZ*ee*ej+\Z,Z-dZ.dZ/dZ0dZ1dZ2ej3fdZ4dZ5d Z6d!Z7d0d"Z8d#Z9d$Z:d%Z;d&Z<d'Z=d(Z>d)Z?d*Z@d+ZAd,ZBd-ZCxZDS)1ra]This class implements rational numbers.

    In the two-argument form of the constructor, Fraction(8, 6) will
    produce a rational number equivalent to 4/3. Both arguments must
    be Rational. The numerator defaults to 0 and the denominator
    defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.

    Fractions can also be constructed from:

      - numeric strings similar to those accepted by the
        float constructor (for example, '-2.3' or '1e10')

      - strings of the form '123/456'

      - float and Decimal instances

      - other Rational instances (including integers)

    
_numerator_denominatorrNT
_normalizectt||}|t|tur||_d|_|St|tj	r|j
|_|j|_|St|ttfr#|\|_|_|St|tr/t |}|t%d|zt	|dpd}|d}|rt	|}nd}|d}|rB|dd	}d
t+|z}||zt	|z}||z}|d}	|	r't	|	}	|	dkr	|d
|	zz}n	|d
|	zz}|d
dkr|}nt-dt|tcxurt|urnnnbt|tj	r9t|tj	r|j
|jz|j
|jz}}nt-d|dkrt/d|z|r(t1j||}
|dkr|
}
||
z}||
z}||_||_|S)aConstructs a Rational.

        Takes a string like '3/2' or '1.5', another Rational instance, a
        numerator/denominator pair, or a float.

        Examples
        --------

        >>> Fraction(10, -8)
        Fraction(-5, 4)
        >>> Fraction(Fraction(1, 7), 5)
        Fraction(1, 35)
        >>> Fraction(Fraction(1, 7), Fraction(2, 3))
        Fraction(3, 14)
        >>> Fraction('314')
        Fraction(314, 1)
        >>> Fraction('-35/4')
        Fraction(-35, 4)
        >>> Fraction('3.1415') # conversion from numeric string
        Fraction(6283, 2000)
        >>> Fraction('-47e-2') # string may include a decimal exponent
        Fraction(-47, 100)
        >>> Fraction(1.47)  # direct construction from float (exact conversion)
        Fraction(6620291452234629, 4503599627370496)
        >>> Fraction(2.25)
        Fraction(9, 4)
        >>> Fraction(Decimal('1.47'))
        Fraction(147, 100)

        Nz Invalid literal for Fraction: %rnum0denomdecimal_
exprsign-z2argument should be a string or a Rational instancez+both arguments should be Rational instanceszFraction(%s, 0))superr__new__typeintrr	
isinstancenumbersRational	numeratordenominatorfloatras_integer_ratiostr_RATIONAL_FORMATmatch
ValueErrorgroupreplacelen	TypeErrorZeroDivisionErrormathgcd)clsrr rselfmrrscalerg	__class__s           =/BuggyBox/python/3.11.7/bootstrap/lib/python3.11/fractions.pyrzFraction.__new__>s->Xs##++C00I#%%"+$%!Iw'788(
:"+"5$-$9!Iw'788#
:5>5O5O5Q5Q2!2Is++
:$**9559$%G%.&/000 5#66	((4"%e**KK"#Kggi00G-")//#r":": "CLL 0$-$5G$D	#u,''%..C4!#hh!88%S0II'2t83K776??c))!*
I !9:::)__
8
8
8
8tK'8'8
8
8
8
8
8G$455	2{G$455	2#k&==%	(==#II
122
2!#$5	$ABBB	K00AQB!OIAK#'c	t|tjr||St|ts/t	|jd|dt
|jd||S)zConverts a finite float to a rational number, exactly.

        Beware that Fraction.from_float(0.3) != Fraction(3, 10).

        z%.from_float() only takes floats, not  ())rrIntegralr!r*__name__rr")r.fs  r4
from_floatzFraction.from_floatsa)**	A3q66MAu%%	A \\\111d1gg.>.>.>@AA
AsA&&(())r5c	 ddlm}t|tjr|t|}n?t||s/t
|jd|dt|jd||	S)zAConverts a finite Decimal instance to a rational number, exactly.rrz).from_decimal() only takes Decimals, not r7r8)
rrrrr9rr*r:rr")r.decrs   r4from_decimalzFraction.from_decimals	$#####c7+,,	9'#c((##CCC))	9sssDII$6$6$6899
9sC((**++r5c|j|jfS)zReturn the integer ratio as a tuple.

        Return a tuple of two integers, whose ratio is equal to the
        Fraction and with a positive denominator.
        rr/s r4r"zFraction.as_integer_ratios!233r5@Bc|dkrtd|j|krt|Sd\}}}}|j|j}}	||z}|||zz}	|	|krn|||||zz|	f\}}}}||||zz
}}0||z
|z}
t||
|zz||
|zz}t||}t	||z
t	||z
kr|S|S)aWClosest Fraction to self with denominator at most max_denominator.

        >>> Fraction('3.141592653589793').limit_denominator(10)
        Fraction(22, 7)
        >>> Fraction('3.141592653589793').limit_denominator(100)
        Fraction(311, 99)
        >>> Fraction(4321, 8765).limit_denominator(10000)
        Fraction(4321, 8765)

        r
z$max_denominator should be at least 1)rr
r
r)r&r	rrabs)
r/max_denominatorp0q0p1q1ndaq2kbound1bound2s
             r4limit_denominatorzFraction.limit_denominators@QCDDD//D>>!#BB 11	1AAbDBO##R"Wb0NBBa!eqA
	R
"$"QrT'2ad7++"b!!v}VD[!1!111MMr5c|jSN)rrLs r4rzFraction.numerators
|r5c|jSrS)r	rTs r4r zFraction.denominators
~r5c@|jjd|jd|jdS)z
repr(self)(z, r8)r3r:rr	rAs r4__repr__zFraction.__repr__	s0#~666#0A0A0AC	Cr5cb|jdkrt|jS|jd|jS)z	str(self)r
/)r	r#rrAs r4__str__zFraction.__str__s7!!t'''"ooot/@/@AAr5cfd}djzdz|_j|_fd}djzdz|_j|_||fS)aGenerates forward and reverse operators given a purely-rational
        operator and a function from the operator module.

        Use this like:
        __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)

        In general, we want to implement the arithmetic operations so
        that mixed-mode operations either call an implementation whose
        author knew about the types of both arguments, or convert both
        to the nearest built in type and do the operation there. In
        Fraction, that means that we define __add__ and __radd__ as:

            def __add__(self, other):
                # Both types have numerators/denominator attributes,
                # so do the operation directly
                if isinstance(other, (int, Fraction)):
                    return Fraction(self.numerator * other.denominator +
                                    other.numerator * self.denominator,
                                    self.denominator * other.denominator)
                # float and complex don't have those operations, but we
                # know about those types, so special case them.
                elif isinstance(other, float):
                    return float(self) + other
                elif isinstance(other, complex):
                    return complex(self) + other
                # Let the other type take over.
                return NotImplemented

            def __radd__(self, other):
                # radd handles more types than add because there's
                # nothing left to fall back to.
                if isinstance(other, numbers.Rational):
                    return Fraction(self.numerator * other.denominator +
                                    other.numerator * self.denominator,
                                    self.denominator * other.denominator)
                elif isinstance(other, Real):
                    return float(other) + float(self)
                elif isinstance(other, Complex):
                    return complex(other) + complex(self)
                return NotImplemented


        There are 5 different cases for a mixed-type addition on
        Fraction. I'll refer to all of the above code that doesn't
        refer to Fraction, float, or complex as "boilerplate". 'r'
        will be an instance of Fraction, which is a subtype of
        Rational (r : Fraction <: Rational), and b : B <:
        Complex. The first three involve 'r + b':

            1. If B <: Fraction, int, float, or complex, we handle
               that specially, and all is well.
            2. If Fraction falls back to the boilerplate code, and it
               were to return a value from __add__, we'd miss the
               possibility that B defines a more intelligent __radd__,
               so the boilerplate should return NotImplemented from
               __add__. In particular, we don't handle Rational
               here, even though we could get an exact answer, in case
               the other type wants to do something special.
            3. If B <: Fraction, Python tries B.__radd__ before
               Fraction.__add__. This is ok, because it was
               implemented with knowledge of Fraction, so it can
               handle those instances before delegating to Real or
               Complex.

        The next two situations describe 'b + r'. We assume that b
        didn't know about Fraction in its implementation, and that it
        uses similar boilerplate code:

            4. If B <: Rational, then __radd_ converts both to the
               builtin rational type (hey look, that's us) and
               proceeds.
            5. Otherwise, __radd__ tries to find the nearest common
               base ABC, and fall back to its builtin type. Since this
               class doesn't subclass a concrete type, there's no
               implementation to fall back to, so we need to try as
               hard as possible to return an actual value, or the user
               will get a TypeError.

        ct|ttfr||St|trt||St|trt	||St
SrS)rrrr!complexNotImplemented)rLbfallback_operatormonomorphic_operators  r4forwardz-Fraction._operator_fallbacks.<locals>.forwardes!c8_--
&++Aq111Au%%
&((q1555Aw''
&((Q777%%r5__c^t|tjr||St|tjr&t	|t	|St|tjr&t
|t
|StSrS)rrrRealr!Complexr^r_)r`rLrarbs  r4reversez-Fraction._operator_fallbacks.<locals>.reverseqs!W-..
&++Aq111Aw|,,
&((q588<<<Aw//
&((WQZZ@@@%%r5__r)r:__doc__)rbrarcrhs``  r4_operator_fallbackszFraction._operator_fallbackss`	&	&	&	&	&	& "3"<<tC.6		&		&		&		&		&		&!#4#==D.6r5ch|j|j}}|j|j}}tj||}|dkrt	||z||zz||zdS||z}|||zz||zz}tj||}	|	dkrt	|||zdSt	||	z|||	zzdS)za + br
Fr
rr r,r-r
rLr`nadanbdbr2stg2s
          r4_addz
Fraction._addamBamBHR66BGb2g-rBw5IIII!G"'NR!V#
Xa^^
77Aq2v%8888RbBhEBBBBr5ch|j|j}}|j|j}}tj||}|dkrt	||z||zz
||zdS||z}|||zz||zz
}tj||}	|	dkrt	|||zdSt	||	z|||	zzdS)za - br
Fr
rmrns
          r4_subz
Fraction._subrwr5c|j|j}}|j|j}}tj||}|dkr
||z}||z}tj||}|dkr
||z}||z}t	||z||zdS)za * br
Fr
rm)rLr`rorprqrrg1rus        r4_mulz
Fraction._mulsamBamB
Xb"


662IB2IB
Xb"


662IB2IBRbU;;;;r5c|j|j}}|j|j}}tj||}|dkr
||z}||z}tj||}|dkr
||z}||z}||z||z}	}|	dkr||	}	}t	||	dS)za / br
rFr
rm)
rLr`rorprqrrr{rurJrKs
          r4_divz
Fraction._divsamBamB
Xb"


662IB2IB
Xb"


662IB2IBBwR1q552rqA1////r5c@|j|jz|j|jzzS)za // brr rLr`s  r4	_floordivzFraction._floordivsam+1LMMr5c|j|j}}t|j|z||jz\}}|t|||zfS)z(a // b, a % b))r divmodrr)rLr`rprrdivn_mods      r4_divmodzFraction._divmodsI
BAK",b1;.>??
UHUBG,,,,r5cj|j|j}}t|j|z|j|zz||zS)za % b)r rr)rLr`rprrs    r4_modz
Fraction._mods6
Br)akB.>?bIIIr5ct|tjr|jdkr|j}|dkr"t|j|z|j|zdS|jdkr$t|j|z|j|zdSt|j|z|j|zdSt|t|zSt||zS)za ** b

        If b is not an integer, the result will be a float or complex
        since roots are generally irrational. If b is an integer, the
        result will be rational.

        r
rFr
)	rrrr rrrr	r!)rLr`powers   r4__pow__zFraction.__pow__sa)**	!}!!A::#ALE$9$%Ne$;/46666\Q&&#ANuf$<$%LUF$:/46666$an_%$?&'l]v$=/46666Qxx588++88q= r5c|jdkr|jdkr
||jzSt|tjrt|j|j|zS|jdkr
||jzS|t|zS)za ** br
r)	r	rrrrrrr r!)r`rLs  r4__rpow__zFraction.__rpow__;s>Q1<1#4#4$$a)**	=AK771<<>Q$$E!HH}r5c:t|j|jdS)z++a: Coerces a subclass instance to FractionFr
rrr	rTs r4__pos__zFraction.__pos__IsanGGGGr5c<t|j|jdS)z-aFr
rrTs r4__neg__zFraction.__neg__Ms
q~%HHHHr5cTtt|j|jdS)zabs(a)Fr
)rrDrr	rTs r4__abs__zFraction.__abs__Qs#AL))1>eLLLLr5c||jdkr||j|jzS||j|jzS)zint(a)rr)rL_indexs  r4__int__zFraction.__int__UsF<!6Q\MQ^;<===6!,!.8999r5cX|jdkr|j|jzS|j|jzS)z
math.trunc(a)rrrTs r4	__trunc__zFraction.__trunc__\s2<!l]an455<1>11r5c |j|jzS)z
math.floor(a)rrTs r4	__floor__zFraction.__floor__cs{am++r5c$|j|jzS)zmath.ceil(a)rrTs r4__ceil__zFraction.__ceil__gs+.//r5cZ|Pt|j|j\}}|dz|jkr|S|dz|jkr|dzS|dzdkr|S|dzSdt|z}|dkr t	t||z|St	t||z|zS)z?round(self, ndigits)

        Rounds half toward even.
        Nr
rr)rrr rDrround)r/ndigitsfloor	remaindershifts     r4	__round__zFraction.__round__ls
?%dnd6FGGE91}t///Q!111qy aqy CLL Q;;E$,//777E$,//%7888r5c	t|jdt}ttt	|j|z}n#t$r
t}YnwxYw|jdkr|n|}|dkrdn|S)z
hash(self)r)powr	_PyHASH_MODULUShashrDrr&_PyHASH_INF)r/dinvhash_results    r4__hash__zFraction.__hash__s	<t("o>>D(c$/2233d:;;EE'	 	 	 EEE	 (/Q..UFr\\rrv-sAA#"A#ct|tur|j|ko
|jdkSt	|t
jr |j|jko|j|jkSt	|t
j	r|j
dkr|j}t	|trGtj|stj|rd|kS|||kSt"S)za == br
r)rrrr	rrrrr rgimagrealr!r,isnanisinfr<r_rs  r4__eq__zFraction.__eq__s77c>><1$<1)<<a)**	5LAK/4Nam3
5a))	afkkAa
	"z!}}
,
1


,axALLOO++"!r5c`t|tjr&||j|jz|j|jzSt|trStj	|stj
|r|d|S||||StS)acHelper for comparison operators, for internal use only.

        Implement comparison between a Rational instance `self`, and
        either another Rational instance or a float `other`.  If
        `other` is not a Rational instance or a float, return
        NotImplemented. `op` should be one of the six standard
        comparison operators.

        r)
rrrrr r	rr!r,rrr<r_)r/otherops   r4_richcmpzFraction._richcmpseW-..	;2do(99'%/9;;
;eU##	"z%  
8DJu$5$5
8r#u~~%r$ 6 6777!!r5cB||tjS)za < b)roperatorltrs  r4__lt__zFraction.__lt__zz!X[)))r5cB||tjS)za > b)rrgtrs  r4__gt__zFraction.__gt__rr5cB||tjS)za <= b)rrlers  r4__le__zFraction.__le__rr5cB||tjS)za >= b)rrgers  r4__ge__zFraction.__ge__rr5c*t|jS)za != 0)boolrrTs r4__bool__zFraction.__bool__sAL!!!r5c,|j|j|jffSrS)r3rr	rAs r4
__reduce__zFraction.__reduce__s$2C DEEr5cvt|tkr|S||j|jSrSrrr3rr	rAs r4__copy__zFraction.__copy__1::!!K~~dot/@AAAr5cvt|tkr|S||j|jSrSr)r/memos  r4__deepcopy__zFraction.__deepcopy__rr5)rN)rBrS)Er:
__module____qualname__rj	__slots__rclassmethodr<r?r"rQpropertyrr rXr[rkrvradd__add____radd__rysub__sub____rsub__r|mul__mul____rmul__r~truediv__truediv____rtruediv__rfloordiv__floordiv__
__rfloordiv__rr
__divmod____rdivmod__rmod__mod____rmod__rrrrrindexrrrrrrrrrrrrrrrr
__classcell__)r3s@r4rr&s(/Ih$hhhhhhhT**[*	,	,[	,4445555nXXCCC
BBBi i i ^CCC,+D(,??GXCCC,+D(,??GX<<<,+D(,??GX000$!4 3D(:J K KKNNN#6"5iAR"S"SL----21'6BBJJJJ
,+D(,??GX!!!<HHHIIIMMM#.::::222,,,000
99992...B"""*""",************"""FFFBBB
BBBBBBBr5)rjrrr,rrresys__all__	hash_infomodulusrinfrcompileVERBOSE
IGNORECASEr$rrr5r4<module>rs65				



,
-'m2:Z"-!!NBNBNBNBNBwNBNBNBNBNBr5