linux-headers (unknown)

(root)/
include/
linux/
vfio.h
       1  /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
       2  /*
       3   * VFIO API definition
       4   *
       5   * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
       6   *     Author: Alex Williamson <alex.williamson@redhat.com>
       7   *
       8   * This program is free software; you can redistribute it and/or modify
       9   * it under the terms of the GNU General Public License version 2 as
      10   * published by the Free Software Foundation.
      11   */
      12  #ifndef VFIO_H
      13  #define VFIO_H
      14  
      15  #include <linux/types.h>
      16  #include <linux/ioctl.h>
      17  
      18  #define VFIO_API_VERSION	0
      19  
      20  
      21  /* Kernel & User level defines for VFIO IOCTLs. */
      22  
      23  /* Extensions */
      24  
      25  #define VFIO_TYPE1_IOMMU		1
      26  #define VFIO_SPAPR_TCE_IOMMU		2
      27  #define VFIO_TYPE1v2_IOMMU		3
      28  /*
      29   * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping).  This
      30   * capability is subject to change as groups are added or removed.
      31   */
      32  #define VFIO_DMA_CC_IOMMU		4
      33  
      34  /* Check if EEH is supported */
      35  #define VFIO_EEH			5
      36  
      37  /* Two-stage IOMMU */
      38  #define VFIO_TYPE1_NESTING_IOMMU	6	/* Implies v2 */
      39  
      40  #define VFIO_SPAPR_TCE_v2_IOMMU		7
      41  
      42  /*
      43   * The No-IOMMU IOMMU offers no translation or isolation for devices and
      44   * supports no ioctls outside of VFIO_CHECK_EXTENSION.  Use of VFIO's No-IOMMU
      45   * code will taint the host kernel and should be used with extreme caution.
      46   */
      47  #define VFIO_NOIOMMU_IOMMU		8
      48  
      49  /* Supports VFIO_DMA_UNMAP_FLAG_ALL */
      50  #define VFIO_UNMAP_ALL			9
      51  
      52  /*
      53   * Supports the vaddr flag for DMA map and unmap.  Not supported for mediated
      54   * devices, so this capability is subject to change as groups are added or
      55   * removed.
      56   */
      57  #define VFIO_UPDATE_VADDR		10
      58  
      59  /*
      60   * The IOCTL interface is designed for extensibility by embedding the
      61   * structure length (argsz) and flags into structures passed between
      62   * kernel and userspace.  We therefore use the _IO() macro for these
      63   * defines to avoid implicitly embedding a size into the ioctl request.
      64   * As structure fields are added, argsz will increase to match and flag
      65   * bits will be defined to indicate additional fields with valid data.
      66   * It's *always* the caller's responsibility to indicate the size of
      67   * the structure passed by setting argsz appropriately.
      68   */
      69  
      70  #define VFIO_TYPE	(';')
      71  #define VFIO_BASE	100
      72  
      73  /*
      74   * For extension of INFO ioctls, VFIO makes use of a capability chain
      75   * designed after PCI/e capabilities.  A flag bit indicates whether
      76   * this capability chain is supported and a field defined in the fixed
      77   * structure defines the offset of the first capability in the chain.
      78   * This field is only valid when the corresponding bit in the flags
      79   * bitmap is set.  This offset field is relative to the start of the
      80   * INFO buffer, as is the next field within each capability header.
      81   * The id within the header is a shared address space per INFO ioctl,
      82   * while the version field is specific to the capability id.  The
      83   * contents following the header are specific to the capability id.
      84   */
      85  struct vfio_info_cap_header {
      86  	__u16	id;		/* Identifies capability */
      87  	__u16	version;	/* Version specific to the capability ID */
      88  	__u32	next;		/* Offset of next capability */
      89  };
      90  
      91  /*
      92   * Callers of INFO ioctls passing insufficiently sized buffers will see
      93   * the capability chain flag bit set, a zero value for the first capability
      94   * offset (if available within the provided argsz), and argsz will be
      95   * updated to report the necessary buffer size.  For compatibility, the
      96   * INFO ioctl will not report error in this case, but the capability chain
      97   * will not be available.
      98   */
      99  
     100  /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */
     101  
     102  /**
     103   * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0)
     104   *
     105   * Report the version of the VFIO API.  This allows us to bump the entire
     106   * API version should we later need to add or change features in incompatible
     107   * ways.
     108   * Return: VFIO_API_VERSION
     109   * Availability: Always
     110   */
     111  #define VFIO_GET_API_VERSION		_IO(VFIO_TYPE, VFIO_BASE + 0)
     112  
     113  /**
     114   * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32)
     115   *
     116   * Check whether an extension is supported.
     117   * Return: 0 if not supported, 1 (or some other positive integer) if supported.
     118   * Availability: Always
     119   */
     120  #define VFIO_CHECK_EXTENSION		_IO(VFIO_TYPE, VFIO_BASE + 1)
     121  
     122  /**
     123   * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32)
     124   *
     125   * Set the iommu to the given type.  The type must be supported by an
     126   * iommu driver as verified by calling CHECK_EXTENSION using the same
     127   * type.  A group must be set to this file descriptor before this
     128   * ioctl is available.  The IOMMU interfaces enabled by this call are
     129   * specific to the value set.
     130   * Return: 0 on success, -errno on failure
     131   * Availability: When VFIO group attached
     132   */
     133  #define VFIO_SET_IOMMU			_IO(VFIO_TYPE, VFIO_BASE + 2)
     134  
     135  /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */
     136  
     137  /**
     138   * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3,
     139   *						struct vfio_group_status)
     140   *
     141   * Retrieve information about the group.  Fills in provided
     142   * struct vfio_group_info.  Caller sets argsz.
     143   * Return: 0 on succes, -errno on failure.
     144   * Availability: Always
     145   */
     146  struct vfio_group_status {
     147  	__u32	argsz;
     148  	__u32	flags;
     149  #define VFIO_GROUP_FLAGS_VIABLE		(1 << 0)
     150  #define VFIO_GROUP_FLAGS_CONTAINER_SET	(1 << 1)
     151  };
     152  #define VFIO_GROUP_GET_STATUS		_IO(VFIO_TYPE, VFIO_BASE + 3)
     153  
     154  /**
     155   * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32)
     156   *
     157   * Set the container for the VFIO group to the open VFIO file
     158   * descriptor provided.  Groups may only belong to a single
     159   * container.  Containers may, at their discretion, support multiple
     160   * groups.  Only when a container is set are all of the interfaces
     161   * of the VFIO file descriptor and the VFIO group file descriptor
     162   * available to the user.
     163   * Return: 0 on success, -errno on failure.
     164   * Availability: Always
     165   */
     166  #define VFIO_GROUP_SET_CONTAINER	_IO(VFIO_TYPE, VFIO_BASE + 4)
     167  
     168  /**
     169   * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5)
     170   *
     171   * Remove the group from the attached container.  This is the
     172   * opposite of the SET_CONTAINER call and returns the group to
     173   * an initial state.  All device file descriptors must be released
     174   * prior to calling this interface.  When removing the last group
     175   * from a container, the IOMMU will be disabled and all state lost,
     176   * effectively also returning the VFIO file descriptor to an initial
     177   * state.
     178   * Return: 0 on success, -errno on failure.
     179   * Availability: When attached to container
     180   */
     181  #define VFIO_GROUP_UNSET_CONTAINER	_IO(VFIO_TYPE, VFIO_BASE + 5)
     182  
     183  /**
     184   * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char)
     185   *
     186   * Return a new file descriptor for the device object described by
     187   * the provided string.  The string should match a device listed in
     188   * the devices subdirectory of the IOMMU group sysfs entry.  The
     189   * group containing the device must already be added to this context.
     190   * Return: new file descriptor on success, -errno on failure.
     191   * Availability: When attached to container
     192   */
     193  #define VFIO_GROUP_GET_DEVICE_FD	_IO(VFIO_TYPE, VFIO_BASE + 6)
     194  
     195  /* --------------- IOCTLs for DEVICE file descriptors --------------- */
     196  
     197  /**
     198   * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7,
     199   *						struct vfio_device_info)
     200   *
     201   * Retrieve information about the device.  Fills in provided
     202   * struct vfio_device_info.  Caller sets argsz.
     203   * Return: 0 on success, -errno on failure.
     204   */
     205  struct vfio_device_info {
     206  	__u32	argsz;
     207  	__u32	flags;
     208  #define VFIO_DEVICE_FLAGS_RESET	(1 << 0)	/* Device supports reset */
     209  #define VFIO_DEVICE_FLAGS_PCI	(1 << 1)	/* vfio-pci device */
     210  #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2)	/* vfio-platform device */
     211  #define VFIO_DEVICE_FLAGS_AMBA  (1 << 3)	/* vfio-amba device */
     212  #define VFIO_DEVICE_FLAGS_CCW	(1 << 4)	/* vfio-ccw device */
     213  #define VFIO_DEVICE_FLAGS_AP	(1 << 5)	/* vfio-ap device */
     214  #define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6)	/* vfio-fsl-mc device */
     215  #define VFIO_DEVICE_FLAGS_CAPS	(1 << 7)	/* Info supports caps */
     216  	__u32	num_regions;	/* Max region index + 1 */
     217  	__u32	num_irqs;	/* Max IRQ index + 1 */
     218  	__u32   cap_offset;	/* Offset within info struct of first cap */
     219  };
     220  #define VFIO_DEVICE_GET_INFO		_IO(VFIO_TYPE, VFIO_BASE + 7)
     221  
     222  /*
     223   * Vendor driver using Mediated device framework should provide device_api
     224   * attribute in supported type attribute groups. Device API string should be one
     225   * of the following corresponding to device flags in vfio_device_info structure.
     226   */
     227  
     228  #define VFIO_DEVICE_API_PCI_STRING		"vfio-pci"
     229  #define VFIO_DEVICE_API_PLATFORM_STRING		"vfio-platform"
     230  #define VFIO_DEVICE_API_AMBA_STRING		"vfio-amba"
     231  #define VFIO_DEVICE_API_CCW_STRING		"vfio-ccw"
     232  #define VFIO_DEVICE_API_AP_STRING		"vfio-ap"
     233  
     234  /*
     235   * The following capabilities are unique to s390 zPCI devices.  Their contents
     236   * are further-defined in vfio_zdev.h
     237   */
     238  #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE		1
     239  #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP		2
     240  #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL		3
     241  #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP		4
     242  
     243  /**
     244   * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8,
     245   *				       struct vfio_region_info)
     246   *
     247   * Retrieve information about a device region.  Caller provides
     248   * struct vfio_region_info with index value set.  Caller sets argsz.
     249   * Implementation of region mapping is bus driver specific.  This is
     250   * intended to describe MMIO, I/O port, as well as bus specific
     251   * regions (ex. PCI config space).  Zero sized regions may be used
     252   * to describe unimplemented regions (ex. unimplemented PCI BARs).
     253   * Return: 0 on success, -errno on failure.
     254   */
     255  struct vfio_region_info {
     256  	__u32	argsz;
     257  	__u32	flags;
     258  #define VFIO_REGION_INFO_FLAG_READ	(1 << 0) /* Region supports read */
     259  #define VFIO_REGION_INFO_FLAG_WRITE	(1 << 1) /* Region supports write */
     260  #define VFIO_REGION_INFO_FLAG_MMAP	(1 << 2) /* Region supports mmap */
     261  #define VFIO_REGION_INFO_FLAG_CAPS	(1 << 3) /* Info supports caps */
     262  	__u32	index;		/* Region index */
     263  	__u32	cap_offset;	/* Offset within info struct of first cap */
     264  	__u64	size;		/* Region size (bytes) */
     265  	__u64	offset;		/* Region offset from start of device fd */
     266  };
     267  #define VFIO_DEVICE_GET_REGION_INFO	_IO(VFIO_TYPE, VFIO_BASE + 8)
     268  
     269  /*
     270   * The sparse mmap capability allows finer granularity of specifying areas
     271   * within a region with mmap support.  When specified, the user should only
     272   * mmap the offset ranges specified by the areas array.  mmaps outside of the
     273   * areas specified may fail (such as the range covering a PCI MSI-X table) or
     274   * may result in improper device behavior.
     275   *
     276   * The structures below define version 1 of this capability.
     277   */
     278  #define VFIO_REGION_INFO_CAP_SPARSE_MMAP	1
     279  
     280  struct vfio_region_sparse_mmap_area {
     281  	__u64	offset;	/* Offset of mmap'able area within region */
     282  	__u64	size;	/* Size of mmap'able area */
     283  };
     284  
     285  struct vfio_region_info_cap_sparse_mmap {
     286  	struct vfio_info_cap_header header;
     287  	__u32	nr_areas;
     288  	__u32	reserved;
     289  	struct vfio_region_sparse_mmap_area areas[];
     290  };
     291  
     292  /*
     293   * The device specific type capability allows regions unique to a specific
     294   * device or class of devices to be exposed.  This helps solve the problem for
     295   * vfio bus drivers of defining which region indexes correspond to which region
     296   * on the device, without needing to resort to static indexes, as done by
     297   * vfio-pci.  For instance, if we were to go back in time, we might remove
     298   * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes
     299   * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd
     300   * make a "VGA" device specific type to describe the VGA access space.  This
     301   * means that non-VGA devices wouldn't need to waste this index, and thus the
     302   * address space associated with it due to implementation of device file
     303   * descriptor offsets in vfio-pci.
     304   *
     305   * The current implementation is now part of the user ABI, so we can't use this
     306   * for VGA, but there are other upcoming use cases, such as opregions for Intel
     307   * IGD devices and framebuffers for vGPU devices.  We missed VGA, but we'll
     308   * use this for future additions.
     309   *
     310   * The structure below defines version 1 of this capability.
     311   */
     312  #define VFIO_REGION_INFO_CAP_TYPE	2
     313  
     314  struct vfio_region_info_cap_type {
     315  	struct vfio_info_cap_header header;
     316  	__u32 type;	/* global per bus driver */
     317  	__u32 subtype;	/* type specific */
     318  };
     319  
     320  /*
     321   * List of region types, global per bus driver.
     322   * If you introduce a new type, please add it here.
     323   */
     324  
     325  /* PCI region type containing a PCI vendor part */
     326  #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE	(1 << 31)
     327  #define VFIO_REGION_TYPE_PCI_VENDOR_MASK	(0xffff)
     328  #define VFIO_REGION_TYPE_GFX                    (1)
     329  #define VFIO_REGION_TYPE_CCW			(2)
     330  #define VFIO_REGION_TYPE_MIGRATION_DEPRECATED   (3)
     331  
     332  /* sub-types for VFIO_REGION_TYPE_PCI_* */
     333  
     334  /* 8086 vendor PCI sub-types */
     335  #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION	(1)
     336  #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG	(2)
     337  #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG	(3)
     338  
     339  /* 10de vendor PCI sub-types */
     340  /*
     341   * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space.
     342   *
     343   * Deprecated, region no longer provided
     344   */
     345  #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM	(1)
     346  
     347  /* 1014 vendor PCI sub-types */
     348  /*
     349   * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU
     350   * to do TLB invalidation on a GPU.
     351   *
     352   * Deprecated, region no longer provided
     353   */
     354  #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD	(1)
     355  
     356  /* sub-types for VFIO_REGION_TYPE_GFX */
     357  #define VFIO_REGION_SUBTYPE_GFX_EDID            (1)
     358  
     359  /**
     360   * struct vfio_region_gfx_edid - EDID region layout.
     361   *
     362   * Set display link state and EDID blob.
     363   *
     364   * The EDID blob has monitor information such as brand, name, serial
     365   * number, physical size, supported video modes and more.
     366   *
     367   * This special region allows userspace (typically qemu) set a virtual
     368   * EDID for the virtual monitor, which allows a flexible display
     369   * configuration.
     370   *
     371   * For the edid blob spec look here:
     372   *    https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
     373   *
     374   * On linux systems you can find the EDID blob in sysfs:
     375   *    /sys/class/drm/${card}/${connector}/edid
     376   *
     377   * You can use the edid-decode ulility (comes with xorg-x11-utils) to
     378   * decode the EDID blob.
     379   *
     380   * @edid_offset: location of the edid blob, relative to the
     381   *               start of the region (readonly).
     382   * @edid_max_size: max size of the edid blob (readonly).
     383   * @edid_size: actual edid size (read/write).
     384   * @link_state: display link state (read/write).
     385   * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on.
     386   * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off.
     387   * @max_xres: max display width (0 == no limitation, readonly).
     388   * @max_yres: max display height (0 == no limitation, readonly).
     389   *
     390   * EDID update protocol:
     391   *   (1) set link-state to down.
     392   *   (2) update edid blob and size.
     393   *   (3) set link-state to up.
     394   */
     395  struct vfio_region_gfx_edid {
     396  	__u32 edid_offset;
     397  	__u32 edid_max_size;
     398  	__u32 edid_size;
     399  	__u32 max_xres;
     400  	__u32 max_yres;
     401  	__u32 link_state;
     402  #define VFIO_DEVICE_GFX_LINK_STATE_UP    1
     403  #define VFIO_DEVICE_GFX_LINK_STATE_DOWN  2
     404  };
     405  
     406  /* sub-types for VFIO_REGION_TYPE_CCW */
     407  #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD	(1)
     408  #define VFIO_REGION_SUBTYPE_CCW_SCHIB		(2)
     409  #define VFIO_REGION_SUBTYPE_CCW_CRW		(3)
     410  
     411  /* sub-types for VFIO_REGION_TYPE_MIGRATION */
     412  #define VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED (1)
     413  
     414  struct vfio_device_migration_info {
     415  	__u32 device_state;         /* VFIO device state */
     416  #define VFIO_DEVICE_STATE_V1_STOP      (0)
     417  #define VFIO_DEVICE_STATE_V1_RUNNING   (1 << 0)
     418  #define VFIO_DEVICE_STATE_V1_SAVING    (1 << 1)
     419  #define VFIO_DEVICE_STATE_V1_RESUMING  (1 << 2)
     420  #define VFIO_DEVICE_STATE_MASK      (VFIO_DEVICE_STATE_V1_RUNNING | \
     421  				     VFIO_DEVICE_STATE_V1_SAVING |  \
     422  				     VFIO_DEVICE_STATE_V1_RESUMING)
     423  
     424  #define VFIO_DEVICE_STATE_VALID(state) \
     425  	(state & VFIO_DEVICE_STATE_V1_RESUMING ? \
     426  	(state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_V1_RESUMING : 1)
     427  
     428  #define VFIO_DEVICE_STATE_IS_ERROR(state) \
     429  	((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_V1_SAVING | \
     430  					      VFIO_DEVICE_STATE_V1_RESUMING))
     431  
     432  #define VFIO_DEVICE_STATE_SET_ERROR(state) \
     433  	((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_STATE_V1_SAVING | \
     434  					     VFIO_DEVICE_STATE_V1_RESUMING)
     435  
     436  	__u32 reserved;
     437  	__u64 pending_bytes;
     438  	__u64 data_offset;
     439  	__u64 data_size;
     440  };
     441  
     442  /*
     443   * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped
     444   * which allows direct access to non-MSIX registers which happened to be within
     445   * the same system page.
     446   *
     447   * Even though the userspace gets direct access to the MSIX data, the existing
     448   * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration.
     449   */
     450  #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE	3
     451  
     452  /*
     453   * Capability with compressed real address (aka SSA - small system address)
     454   * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing
     455   * and by the userspace to associate a NVLink bridge with a GPU.
     456   *
     457   * Deprecated, capability no longer provided
     458   */
     459  #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT	4
     460  
     461  struct vfio_region_info_cap_nvlink2_ssatgt {
     462  	struct vfio_info_cap_header header;
     463  	__u64 tgt;
     464  };
     465  
     466  /*
     467   * Capability with an NVLink link speed. The value is read by
     468   * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed"
     469   * property in the device tree. The value is fixed in the hardware
     470   * and failing to provide the correct value results in the link
     471   * not working with no indication from the driver why.
     472   *
     473   * Deprecated, capability no longer provided
     474   */
     475  #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD	5
     476  
     477  struct vfio_region_info_cap_nvlink2_lnkspd {
     478  	struct vfio_info_cap_header header;
     479  	__u32 link_speed;
     480  	__u32 __pad;
     481  };
     482  
     483  /**
     484   * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9,
     485   *				    struct vfio_irq_info)
     486   *
     487   * Retrieve information about a device IRQ.  Caller provides
     488   * struct vfio_irq_info with index value set.  Caller sets argsz.
     489   * Implementation of IRQ mapping is bus driver specific.  Indexes
     490   * using multiple IRQs are primarily intended to support MSI-like
     491   * interrupt blocks.  Zero count irq blocks may be used to describe
     492   * unimplemented interrupt types.
     493   *
     494   * The EVENTFD flag indicates the interrupt index supports eventfd based
     495   * signaling.
     496   *
     497   * The MASKABLE flags indicates the index supports MASK and UNMASK
     498   * actions described below.
     499   *
     500   * AUTOMASKED indicates that after signaling, the interrupt line is
     501   * automatically masked by VFIO and the user needs to unmask the line
     502   * to receive new interrupts.  This is primarily intended to distinguish
     503   * level triggered interrupts.
     504   *
     505   * The NORESIZE flag indicates that the interrupt lines within the index
     506   * are setup as a set and new subindexes cannot be enabled without first
     507   * disabling the entire index.  This is used for interrupts like PCI MSI
     508   * and MSI-X where the driver may only use a subset of the available
     509   * indexes, but VFIO needs to enable a specific number of vectors
     510   * upfront.  In the case of MSI-X, where the user can enable MSI-X and
     511   * then add and unmask vectors, it's up to userspace to make the decision
     512   * whether to allocate the maximum supported number of vectors or tear
     513   * down setup and incrementally increase the vectors as each is enabled.
     514   */
     515  struct vfio_irq_info {
     516  	__u32	argsz;
     517  	__u32	flags;
     518  #define VFIO_IRQ_INFO_EVENTFD		(1 << 0)
     519  #define VFIO_IRQ_INFO_MASKABLE		(1 << 1)
     520  #define VFIO_IRQ_INFO_AUTOMASKED	(1 << 2)
     521  #define VFIO_IRQ_INFO_NORESIZE		(1 << 3)
     522  	__u32	index;		/* IRQ index */
     523  	__u32	count;		/* Number of IRQs within this index */
     524  };
     525  #define VFIO_DEVICE_GET_IRQ_INFO	_IO(VFIO_TYPE, VFIO_BASE + 9)
     526  
     527  /**
     528   * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set)
     529   *
     530   * Set signaling, masking, and unmasking of interrupts.  Caller provides
     531   * struct vfio_irq_set with all fields set.  'start' and 'count' indicate
     532   * the range of subindexes being specified.
     533   *
     534   * The DATA flags specify the type of data provided.  If DATA_NONE, the
     535   * operation performs the specified action immediately on the specified
     536   * interrupt(s).  For example, to unmask AUTOMASKED interrupt [0,0]:
     537   * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1.
     538   *
     539   * DATA_BOOL allows sparse support for the same on arrays of interrupts.
     540   * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]):
     541   * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3,
     542   * data = {1,0,1}
     543   *
     544   * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd.
     545   * A value of -1 can be used to either de-assign interrupts if already
     546   * assigned or skip un-assigned interrupts.  For example, to set an eventfd
     547   * to be trigger for interrupts [0,0] and [0,2]:
     548   * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3,
     549   * data = {fd1, -1, fd2}
     550   * If index [0,1] is previously set, two count = 1 ioctls calls would be
     551   * required to set [0,0] and [0,2] without changing [0,1].
     552   *
     553   * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used
     554   * with ACTION_TRIGGER to perform kernel level interrupt loopback testing
     555   * from userspace (ie. simulate hardware triggering).
     556   *
     557   * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER
     558   * enables the interrupt index for the device.  Individual subindex interrupts
     559   * can be disabled using the -1 value for DATA_EVENTFD or the index can be
     560   * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0.
     561   *
     562   * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while
     563   * ACTION_TRIGGER specifies kernel->user signaling.
     564   */
     565  struct vfio_irq_set {
     566  	__u32	argsz;
     567  	__u32	flags;
     568  #define VFIO_IRQ_SET_DATA_NONE		(1 << 0) /* Data not present */
     569  #define VFIO_IRQ_SET_DATA_BOOL		(1 << 1) /* Data is bool (u8) */
     570  #define VFIO_IRQ_SET_DATA_EVENTFD	(1 << 2) /* Data is eventfd (s32) */
     571  #define VFIO_IRQ_SET_ACTION_MASK	(1 << 3) /* Mask interrupt */
     572  #define VFIO_IRQ_SET_ACTION_UNMASK	(1 << 4) /* Unmask interrupt */
     573  #define VFIO_IRQ_SET_ACTION_TRIGGER	(1 << 5) /* Trigger interrupt */
     574  	__u32	index;
     575  	__u32	start;
     576  	__u32	count;
     577  	__u8	data[];
     578  };
     579  #define VFIO_DEVICE_SET_IRQS		_IO(VFIO_TYPE, VFIO_BASE + 10)
     580  
     581  #define VFIO_IRQ_SET_DATA_TYPE_MASK	(VFIO_IRQ_SET_DATA_NONE | \
     582  					 VFIO_IRQ_SET_DATA_BOOL | \
     583  					 VFIO_IRQ_SET_DATA_EVENTFD)
     584  #define VFIO_IRQ_SET_ACTION_TYPE_MASK	(VFIO_IRQ_SET_ACTION_MASK | \
     585  					 VFIO_IRQ_SET_ACTION_UNMASK | \
     586  					 VFIO_IRQ_SET_ACTION_TRIGGER)
     587  /**
     588   * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11)
     589   *
     590   * Reset a device.
     591   */
     592  #define VFIO_DEVICE_RESET		_IO(VFIO_TYPE, VFIO_BASE + 11)
     593  
     594  /*
     595   * The VFIO-PCI bus driver makes use of the following fixed region and
     596   * IRQ index mapping.  Unimplemented regions return a size of zero.
     597   * Unimplemented IRQ types return a count of zero.
     598   */
     599  
     600  enum {
     601  	VFIO_PCI_BAR0_REGION_INDEX,
     602  	VFIO_PCI_BAR1_REGION_INDEX,
     603  	VFIO_PCI_BAR2_REGION_INDEX,
     604  	VFIO_PCI_BAR3_REGION_INDEX,
     605  	VFIO_PCI_BAR4_REGION_INDEX,
     606  	VFIO_PCI_BAR5_REGION_INDEX,
     607  	VFIO_PCI_ROM_REGION_INDEX,
     608  	VFIO_PCI_CONFIG_REGION_INDEX,
     609  	/*
     610  	 * Expose VGA regions defined for PCI base class 03, subclass 00.
     611  	 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df
     612  	 * as well as the MMIO range 0xa0000 to 0xbffff.  Each implemented
     613  	 * range is found at it's identity mapped offset from the region
     614  	 * offset, for example 0x3b0 is region_info.offset + 0x3b0.  Areas
     615  	 * between described ranges are unimplemented.
     616  	 */
     617  	VFIO_PCI_VGA_REGION_INDEX,
     618  	VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */
     619  				 /* device specific cap to define content. */
     620  };
     621  
     622  enum {
     623  	VFIO_PCI_INTX_IRQ_INDEX,
     624  	VFIO_PCI_MSI_IRQ_INDEX,
     625  	VFIO_PCI_MSIX_IRQ_INDEX,
     626  	VFIO_PCI_ERR_IRQ_INDEX,
     627  	VFIO_PCI_REQ_IRQ_INDEX,
     628  	VFIO_PCI_NUM_IRQS
     629  };
     630  
     631  /*
     632   * The vfio-ccw bus driver makes use of the following fixed region and
     633   * IRQ index mapping. Unimplemented regions return a size of zero.
     634   * Unimplemented IRQ types return a count of zero.
     635   */
     636  
     637  enum {
     638  	VFIO_CCW_CONFIG_REGION_INDEX,
     639  	VFIO_CCW_NUM_REGIONS
     640  };
     641  
     642  enum {
     643  	VFIO_CCW_IO_IRQ_INDEX,
     644  	VFIO_CCW_CRW_IRQ_INDEX,
     645  	VFIO_CCW_REQ_IRQ_INDEX,
     646  	VFIO_CCW_NUM_IRQS
     647  };
     648  
     649  /**
     650   * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 12,
     651   *					      struct vfio_pci_hot_reset_info)
     652   *
     653   * Return: 0 on success, -errno on failure:
     654   *	-enospc = insufficient buffer, -enodev = unsupported for device.
     655   */
     656  struct vfio_pci_dependent_device {
     657  	__u32	group_id;
     658  	__u16	segment;
     659  	__u8	bus;
     660  	__u8	devfn; /* Use PCI_SLOT/PCI_FUNC */
     661  };
     662  
     663  struct vfio_pci_hot_reset_info {
     664  	__u32	argsz;
     665  	__u32	flags;
     666  	__u32	count;
     667  	struct vfio_pci_dependent_device	devices[];
     668  };
     669  
     670  #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO	_IO(VFIO_TYPE, VFIO_BASE + 12)
     671  
     672  /**
     673   * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13,
     674   *				    struct vfio_pci_hot_reset)
     675   *
     676   * Return: 0 on success, -errno on failure.
     677   */
     678  struct vfio_pci_hot_reset {
     679  	__u32	argsz;
     680  	__u32	flags;
     681  	__u32	count;
     682  	__s32	group_fds[];
     683  };
     684  
     685  #define VFIO_DEVICE_PCI_HOT_RESET	_IO(VFIO_TYPE, VFIO_BASE + 13)
     686  
     687  /**
     688   * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14,
     689   *                                    struct vfio_device_query_gfx_plane)
     690   *
     691   * Set the drm_plane_type and flags, then retrieve the gfx plane info.
     692   *
     693   * flags supported:
     694   * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set
     695   *   to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no
     696   *   support for dma-buf.
     697   * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set
     698   *   to ask if the mdev supports region. 0 on support, -EINVAL on no
     699   *   support for region.
     700   * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set
     701   *   with each call to query the plane info.
     702   * - Others are invalid and return -EINVAL.
     703   *
     704   * Note:
     705   * 1. Plane could be disabled by guest. In that case, success will be
     706   *    returned with zero-initialized drm_format, size, width and height
     707   *    fields.
     708   * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available
     709   *
     710   * Return: 0 on success, -errno on other failure.
     711   */
     712  struct vfio_device_gfx_plane_info {
     713  	__u32 argsz;
     714  	__u32 flags;
     715  #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0)
     716  #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1)
     717  #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2)
     718  	/* in */
     719  	__u32 drm_plane_type;	/* type of plane: DRM_PLANE_TYPE_* */
     720  	/* out */
     721  	__u32 drm_format;	/* drm format of plane */
     722  	__u64 drm_format_mod;   /* tiled mode */
     723  	__u32 width;	/* width of plane */
     724  	__u32 height;	/* height of plane */
     725  	__u32 stride;	/* stride of plane */
     726  	__u32 size;	/* size of plane in bytes, align on page*/
     727  	__u32 x_pos;	/* horizontal position of cursor plane */
     728  	__u32 y_pos;	/* vertical position of cursor plane*/
     729  	__u32 x_hot;    /* horizontal position of cursor hotspot */
     730  	__u32 y_hot;    /* vertical position of cursor hotspot */
     731  	union {
     732  		__u32 region_index;	/* region index */
     733  		__u32 dmabuf_id;	/* dma-buf id */
     734  	};
     735  };
     736  
     737  #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14)
     738  
     739  /**
     740   * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32)
     741   *
     742   * Return a new dma-buf file descriptor for an exposed guest framebuffer
     743   * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_
     744   * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer.
     745   */
     746  
     747  #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15)
     748  
     749  /**
     750   * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16,
     751   *                              struct vfio_device_ioeventfd)
     752   *
     753   * Perform a write to the device at the specified device fd offset, with
     754   * the specified data and width when the provided eventfd is triggered.
     755   * vfio bus drivers may not support this for all regions, for all widths,
     756   * or at all.  vfio-pci currently only enables support for BAR regions,
     757   * excluding the MSI-X vector table.
     758   *
     759   * Return: 0 on success, -errno on failure.
     760   */
     761  struct vfio_device_ioeventfd {
     762  	__u32	argsz;
     763  	__u32	flags;
     764  #define VFIO_DEVICE_IOEVENTFD_8		(1 << 0) /* 1-byte write */
     765  #define VFIO_DEVICE_IOEVENTFD_16	(1 << 1) /* 2-byte write */
     766  #define VFIO_DEVICE_IOEVENTFD_32	(1 << 2) /* 4-byte write */
     767  #define VFIO_DEVICE_IOEVENTFD_64	(1 << 3) /* 8-byte write */
     768  #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK	(0xf)
     769  	__u64	offset;			/* device fd offset of write */
     770  	__u64	data;			/* data to be written */
     771  	__s32	fd;			/* -1 for de-assignment */
     772  };
     773  
     774  #define VFIO_DEVICE_IOEVENTFD		_IO(VFIO_TYPE, VFIO_BASE + 16)
     775  
     776  /**
     777   * VFIO_DEVICE_FEATURE - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
     778   *			       struct vfio_device_feature)
     779   *
     780   * Get, set, or probe feature data of the device.  The feature is selected
     781   * using the FEATURE_MASK portion of the flags field.  Support for a feature
     782   * can be probed by setting both the FEATURE_MASK and PROBE bits.  A probe
     783   * may optionally include the GET and/or SET bits to determine read vs write
     784   * access of the feature respectively.  Probing a feature will return success
     785   * if the feature is supported and all of the optionally indicated GET/SET
     786   * methods are supported.  The format of the data portion of the structure is
     787   * specific to the given feature.  The data portion is not required for
     788   * probing.  GET and SET are mutually exclusive, except for use with PROBE.
     789   *
     790   * Return 0 on success, -errno on failure.
     791   */
     792  struct vfio_device_feature {
     793  	__u32	argsz;
     794  	__u32	flags;
     795  #define VFIO_DEVICE_FEATURE_MASK	(0xffff) /* 16-bit feature index */
     796  #define VFIO_DEVICE_FEATURE_GET		(1 << 16) /* Get feature into data[] */
     797  #define VFIO_DEVICE_FEATURE_SET		(1 << 17) /* Set feature from data[] */
     798  #define VFIO_DEVICE_FEATURE_PROBE	(1 << 18) /* Probe feature support */
     799  	__u8	data[];
     800  };
     801  
     802  #define VFIO_DEVICE_FEATURE		_IO(VFIO_TYPE, VFIO_BASE + 17)
     803  
     804  /*
     805   * Provide support for setting a PCI VF Token, which is used as a shared
     806   * secret between PF and VF drivers.  This feature may only be set on a
     807   * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing
     808   * open VFs.  Data provided when setting this feature is a 16-byte array
     809   * (__u8 b[16]), representing a UUID.
     810   */
     811  #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN	(0)
     812  
     813  /*
     814   * Indicates the device can support the migration API through
     815   * VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. If this GET succeeds, the RUNNING and
     816   * ERROR states are always supported. Support for additional states is
     817   * indicated via the flags field; at least VFIO_MIGRATION_STOP_COPY must be
     818   * set.
     819   *
     820   * VFIO_MIGRATION_STOP_COPY means that STOP, STOP_COPY and
     821   * RESUMING are supported.
     822   *
     823   * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P
     824   * is supported in addition to the STOP_COPY states.
     825   *
     826   * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_PRE_COPY means that
     827   * PRE_COPY is supported in addition to the STOP_COPY states.
     828   *
     829   * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY
     830   * means that RUNNING_P2P, PRE_COPY and PRE_COPY_P2P are supported
     831   * in addition to the STOP_COPY states.
     832   *
     833   * Other combinations of flags have behavior to be defined in the future.
     834   */
     835  struct vfio_device_feature_migration {
     836  	__aligned_u64 flags;
     837  #define VFIO_MIGRATION_STOP_COPY	(1 << 0)
     838  #define VFIO_MIGRATION_P2P		(1 << 1)
     839  #define VFIO_MIGRATION_PRE_COPY		(1 << 2)
     840  };
     841  #define VFIO_DEVICE_FEATURE_MIGRATION 1
     842  
     843  /*
     844   * Upon VFIO_DEVICE_FEATURE_SET, execute a migration state change on the VFIO
     845   * device. The new state is supplied in device_state, see enum
     846   * vfio_device_mig_state for details
     847   *
     848   * The kernel migration driver must fully transition the device to the new state
     849   * value before the operation returns to the user.
     850   *
     851   * The kernel migration driver must not generate asynchronous device state
     852   * transitions outside of manipulation by the user or the VFIO_DEVICE_RESET
     853   * ioctl as described above.
     854   *
     855   * If this function fails then current device_state may be the original
     856   * operating state or some other state along the combination transition path.
     857   * The user can then decide if it should execute a VFIO_DEVICE_RESET, attempt
     858   * to return to the original state, or attempt to return to some other state
     859   * such as RUNNING or STOP.
     860   *
     861   * If the new_state starts a new data transfer session then the FD associated
     862   * with that session is returned in data_fd. The user is responsible to close
     863   * this FD when it is finished. The user must consider the migration data stream
     864   * carried over the FD to be opaque and must preserve the byte order of the
     865   * stream. The user is not required to preserve buffer segmentation when writing
     866   * the data stream during the RESUMING operation.
     867   *
     868   * Upon VFIO_DEVICE_FEATURE_GET, get the current migration state of the VFIO
     869   * device, data_fd will be -1.
     870   */
     871  struct vfio_device_feature_mig_state {
     872  	__u32 device_state; /* From enum vfio_device_mig_state */
     873  	__s32 data_fd;
     874  };
     875  #define VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE 2
     876  
     877  /*
     878   * The device migration Finite State Machine is described by the enum
     879   * vfio_device_mig_state. Some of the FSM arcs will create a migration data
     880   * transfer session by returning a FD, in this case the migration data will
     881   * flow over the FD using read() and write() as discussed below.
     882   *
     883   * There are 5 states to support VFIO_MIGRATION_STOP_COPY:
     884   *  RUNNING - The device is running normally
     885   *  STOP - The device does not change the internal or external state
     886   *  STOP_COPY - The device internal state can be read out
     887   *  RESUMING - The device is stopped and is loading a new internal state
     888   *  ERROR - The device has failed and must be reset
     889   *
     890   * And optional states to support VFIO_MIGRATION_P2P:
     891   *  RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA
     892   * And VFIO_MIGRATION_PRE_COPY:
     893   *  PRE_COPY - The device is running normally but tracking internal state
     894   *             changes
     895   * And VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY:
     896   *  PRE_COPY_P2P - PRE_COPY, except the device cannot do peer to peer DMA
     897   *
     898   * The FSM takes actions on the arcs between FSM states. The driver implements
     899   * the following behavior for the FSM arcs:
     900   *
     901   * RUNNING_P2P -> STOP
     902   * STOP_COPY -> STOP
     903   *   While in STOP the device must stop the operation of the device. The device
     904   *   must not generate interrupts, DMA, or any other change to external state.
     905   *   It must not change its internal state. When stopped the device and kernel
     906   *   migration driver must accept and respond to interaction to support external
     907   *   subsystems in the STOP state, for example PCI MSI-X and PCI config space.
     908   *   Failure by the user to restrict device access while in STOP must not result
     909   *   in error conditions outside the user context (ex. host system faults).
     910   *
     911   *   The STOP_COPY arc will terminate a data transfer session.
     912   *
     913   * RESUMING -> STOP
     914   *   Leaving RESUMING terminates a data transfer session and indicates the
     915   *   device should complete processing of the data delivered by write(). The
     916   *   kernel migration driver should complete the incorporation of data written
     917   *   to the data transfer FD into the device internal state and perform
     918   *   final validity and consistency checking of the new device state. If the
     919   *   user provided data is found to be incomplete, inconsistent, or otherwise
     920   *   invalid, the migration driver must fail the SET_STATE ioctl and
     921   *   optionally go to the ERROR state as described below.
     922   *
     923   *   While in STOP the device has the same behavior as other STOP states
     924   *   described above.
     925   *
     926   *   To abort a RESUMING session the device must be reset.
     927   *
     928   * PRE_COPY -> RUNNING
     929   * RUNNING_P2P -> RUNNING
     930   *   While in RUNNING the device is fully operational, the device may generate
     931   *   interrupts, DMA, respond to MMIO, all vfio device regions are functional,
     932   *   and the device may advance its internal state.
     933   *
     934   *   The PRE_COPY arc will terminate a data transfer session.
     935   *
     936   * PRE_COPY_P2P -> RUNNING_P2P
     937   * RUNNING -> RUNNING_P2P
     938   * STOP -> RUNNING_P2P
     939   *   While in RUNNING_P2P the device is partially running in the P2P quiescent
     940   *   state defined below.
     941   *
     942   *   The PRE_COPY_P2P arc will terminate a data transfer session.
     943   *
     944   * RUNNING -> PRE_COPY
     945   * RUNNING_P2P -> PRE_COPY_P2P
     946   * STOP -> STOP_COPY
     947   *   PRE_COPY, PRE_COPY_P2P and STOP_COPY form the "saving group" of states
     948   *   which share a data transfer session. Moving between these states alters
     949   *   what is streamed in session, but does not terminate or otherwise affect
     950   *   the associated fd.
     951   *
     952   *   These arcs begin the process of saving the device state and will return a
     953   *   new data_fd. The migration driver may perform actions such as enabling
     954   *   dirty logging of device state when entering PRE_COPY or PER_COPY_P2P.
     955   *
     956   *   Each arc does not change the device operation, the device remains
     957   *   RUNNING, P2P quiesced or in STOP. The STOP_COPY state is described below
     958   *   in PRE_COPY_P2P -> STOP_COPY.
     959   *
     960   * PRE_COPY -> PRE_COPY_P2P
     961   *   Entering PRE_COPY_P2P continues all the behaviors of PRE_COPY above.
     962   *   However, while in the PRE_COPY_P2P state, the device is partially running
     963   *   in the P2P quiescent state defined below, like RUNNING_P2P.
     964   *
     965   * PRE_COPY_P2P -> PRE_COPY
     966   *   This arc allows returning the device to a full RUNNING behavior while
     967   *   continuing all the behaviors of PRE_COPY.
     968   *
     969   * PRE_COPY_P2P -> STOP_COPY
     970   *   While in the STOP_COPY state the device has the same behavior as STOP
     971   *   with the addition that the data transfers session continues to stream the
     972   *   migration state. End of stream on the FD indicates the entire device
     973   *   state has been transferred.
     974   *
     975   *   The user should take steps to restrict access to vfio device regions while
     976   *   the device is in STOP_COPY or risk corruption of the device migration data
     977   *   stream.
     978   *
     979   * STOP -> RESUMING
     980   *   Entering the RESUMING state starts a process of restoring the device state
     981   *   and will return a new data_fd. The data stream fed into the data_fd should
     982   *   be taken from the data transfer output of a single FD during saving from
     983   *   a compatible device. The migration driver may alter/reset the internal
     984   *   device state for this arc if required to prepare the device to receive the
     985   *   migration data.
     986   *
     987   * STOP_COPY -> PRE_COPY
     988   * STOP_COPY -> PRE_COPY_P2P
     989   *   These arcs are not permitted and return error if requested. Future
     990   *   revisions of this API may define behaviors for these arcs, in this case
     991   *   support will be discoverable by a new flag in
     992   *   VFIO_DEVICE_FEATURE_MIGRATION.
     993   *
     994   * any -> ERROR
     995   *   ERROR cannot be specified as a device state, however any transition request
     996   *   can be failed with an errno return and may then move the device_state into
     997   *   ERROR. In this case the device was unable to execute the requested arc and
     998   *   was also unable to restore the device to any valid device_state.
     999   *   To recover from ERROR VFIO_DEVICE_RESET must be used to return the
    1000   *   device_state back to RUNNING.
    1001   *
    1002   * The optional peer to peer (P2P) quiescent state is intended to be a quiescent
    1003   * state for the device for the purposes of managing multiple devices within a
    1004   * user context where peer-to-peer DMA between devices may be active. The
    1005   * RUNNING_P2P and PRE_COPY_P2P states must prevent the device from initiating
    1006   * any new P2P DMA transactions. If the device can identify P2P transactions
    1007   * then it can stop only P2P DMA, otherwise it must stop all DMA. The migration
    1008   * driver must complete any such outstanding operations prior to completing the
    1009   * FSM arc into a P2P state. For the purpose of specification the states
    1010   * behave as though the device was fully running if not supported. Like while in
    1011   * STOP or STOP_COPY the user must not touch the device, otherwise the state
    1012   * can be exited.
    1013   *
    1014   * The remaining possible transitions are interpreted as combinations of the
    1015   * above FSM arcs. As there are multiple paths through the FSM arcs the path
    1016   * should be selected based on the following rules:
    1017   *   - Select the shortest path.
    1018   *   - The path cannot have saving group states as interior arcs, only
    1019   *     starting/end states.
    1020   * Refer to vfio_mig_get_next_state() for the result of the algorithm.
    1021   *
    1022   * The automatic transit through the FSM arcs that make up the combination
    1023   * transition is invisible to the user. When working with combination arcs the
    1024   * user may see any step along the path in the device_state if SET_STATE
    1025   * fails. When handling these types of errors users should anticipate future
    1026   * revisions of this protocol using new states and those states becoming
    1027   * visible in this case.
    1028   *
    1029   * The optional states cannot be used with SET_STATE if the device does not
    1030   * support them. The user can discover if these states are supported by using
    1031   * VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can
    1032   * avoid knowing about these optional states if the kernel driver supports them.
    1033   *
    1034   * Arcs touching PRE_COPY and PRE_COPY_P2P are removed if support for PRE_COPY
    1035   * is not present.
    1036   */
    1037  enum vfio_device_mig_state {
    1038  	VFIO_DEVICE_STATE_ERROR = 0,
    1039  	VFIO_DEVICE_STATE_STOP = 1,
    1040  	VFIO_DEVICE_STATE_RUNNING = 2,
    1041  	VFIO_DEVICE_STATE_STOP_COPY = 3,
    1042  	VFIO_DEVICE_STATE_RESUMING = 4,
    1043  	VFIO_DEVICE_STATE_RUNNING_P2P = 5,
    1044  	VFIO_DEVICE_STATE_PRE_COPY = 6,
    1045  	VFIO_DEVICE_STATE_PRE_COPY_P2P = 7,
    1046  };
    1047  
    1048  /**
    1049   * VFIO_MIG_GET_PRECOPY_INFO - _IO(VFIO_TYPE, VFIO_BASE + 21)
    1050   *
    1051   * This ioctl is used on the migration data FD in the precopy phase of the
    1052   * migration data transfer. It returns an estimate of the current data sizes
    1053   * remaining to be transferred. It allows the user to judge when it is
    1054   * appropriate to leave PRE_COPY for STOP_COPY.
    1055   *
    1056   * This ioctl is valid only in PRE_COPY states and kernel driver should
    1057   * return -EINVAL from any other migration state.
    1058   *
    1059   * The vfio_precopy_info data structure returned by this ioctl provides
    1060   * estimates of data available from the device during the PRE_COPY states.
    1061   * This estimate is split into two categories, initial_bytes and
    1062   * dirty_bytes.
    1063   *
    1064   * The initial_bytes field indicates the amount of initial precopy
    1065   * data available from the device. This field should have a non-zero initial
    1066   * value and decrease as migration data is read from the device.
    1067   * It is recommended to leave PRE_COPY for STOP_COPY only after this field
    1068   * reaches zero. Leaving PRE_COPY earlier might make things slower.
    1069   *
    1070   * The dirty_bytes field tracks device state changes relative to data
    1071   * previously retrieved.  This field starts at zero and may increase as
    1072   * the internal device state is modified or decrease as that modified
    1073   * state is read from the device.
    1074   *
    1075   * Userspace may use the combination of these fields to estimate the
    1076   * potential data size available during the PRE_COPY phases, as well as
    1077   * trends relative to the rate the device is dirtying its internal
    1078   * state, but these fields are not required to have any bearing relative
    1079   * to the data size available during the STOP_COPY phase.
    1080   *
    1081   * Drivers have a lot of flexibility in when and what they transfer during the
    1082   * PRE_COPY phase, and how they report this from VFIO_MIG_GET_PRECOPY_INFO.
    1083   *
    1084   * During pre-copy the migration data FD has a temporary "end of stream" that is
    1085   * reached when both initial_bytes and dirty_byte are zero. For instance, this
    1086   * may indicate that the device is idle and not currently dirtying any internal
    1087   * state. When read() is done on this temporary end of stream the kernel driver
    1088   * should return ENOMSG from read(). Userspace can wait for more data (which may
    1089   * never come) by using poll.
    1090   *
    1091   * Once in STOP_COPY the migration data FD has a permanent end of stream
    1092   * signaled in the usual way by read() always returning 0 and poll always
    1093   * returning readable. ENOMSG may not be returned in STOP_COPY.
    1094   * Support for this ioctl is mandatory if a driver claims to support
    1095   * VFIO_MIGRATION_PRE_COPY.
    1096   *
    1097   * Return: 0 on success, -1 and errno set on failure.
    1098   */
    1099  struct vfio_precopy_info {
    1100  	__u32 argsz;
    1101  	__u32 flags;
    1102  	__aligned_u64 initial_bytes;
    1103  	__aligned_u64 dirty_bytes;
    1104  };
    1105  
    1106  #define VFIO_MIG_GET_PRECOPY_INFO _IO(VFIO_TYPE, VFIO_BASE + 21)
    1107  
    1108  /*
    1109   * Upon VFIO_DEVICE_FEATURE_SET, allow the device to be moved into a low power
    1110   * state with the platform-based power management.  Device use of lower power
    1111   * states depends on factors managed by the runtime power management core,
    1112   * including system level support and coordinating support among dependent
    1113   * devices.  Enabling device low power entry does not guarantee lower power
    1114   * usage by the device, nor is a mechanism provided through this feature to
    1115   * know the current power state of the device.  If any device access happens
    1116   * (either from the host or through the vfio uAPI) when the device is in the
    1117   * low power state, then the host will move the device out of the low power
    1118   * state as necessary prior to the access.  Once the access is completed, the
    1119   * device may re-enter the low power state.  For single shot low power support
    1120   * with wake-up notification, see
    1121   * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP below.  Access to mmap'd
    1122   * device regions is disabled on LOW_POWER_ENTRY and may only be resumed after
    1123   * calling LOW_POWER_EXIT.
    1124   */
    1125  #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY 3
    1126  
    1127  /*
    1128   * This device feature has the same behavior as
    1129   * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY with the exception that the user
    1130   * provides an eventfd for wake-up notification.  When the device moves out of
    1131   * the low power state for the wake-up, the host will not allow the device to
    1132   * re-enter a low power state without a subsequent user call to one of the low
    1133   * power entry device feature IOCTLs.  Access to mmap'd device regions is
    1134   * disabled on LOW_POWER_ENTRY_WITH_WAKEUP and may only be resumed after the
    1135   * low power exit.  The low power exit can happen either through LOW_POWER_EXIT
    1136   * or through any other access (where the wake-up notification has been
    1137   * generated).  The access to mmap'd device regions will not trigger low power
    1138   * exit.
    1139   *
    1140   * The notification through the provided eventfd will be generated only when
    1141   * the device has entered and is resumed from a low power state after
    1142   * calling this device feature IOCTL.  A device that has not entered low power
    1143   * state, as managed through the runtime power management core, will not
    1144   * generate a notification through the provided eventfd on access.  Calling the
    1145   * LOW_POWER_EXIT feature is optional in the case where notification has been
    1146   * signaled on the provided eventfd that a resume from low power has occurred.
    1147   */
    1148  struct vfio_device_low_power_entry_with_wakeup {
    1149  	__s32 wakeup_eventfd;
    1150  	__u32 reserved;
    1151  };
    1152  
    1153  #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP 4
    1154  
    1155  /*
    1156   * Upon VFIO_DEVICE_FEATURE_SET, disallow use of device low power states as
    1157   * previously enabled via VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY or
    1158   * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP device features.
    1159   * This device feature IOCTL may itself generate a wakeup eventfd notification
    1160   * in the latter case if the device had previously entered a low power state.
    1161   */
    1162  #define VFIO_DEVICE_FEATURE_LOW_POWER_EXIT 5
    1163  
    1164  /*
    1165   * Upon VFIO_DEVICE_FEATURE_SET start/stop device DMA logging.
    1166   * VFIO_DEVICE_FEATURE_PROBE can be used to detect if the device supports
    1167   * DMA logging.
    1168   *
    1169   * DMA logging allows a device to internally record what DMAs the device is
    1170   * initiating and report them back to userspace. It is part of the VFIO
    1171   * migration infrastructure that allows implementing dirty page tracking
    1172   * during the pre copy phase of live migration. Only DMA WRITEs are logged,
    1173   * and this API is not connected to VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE.
    1174   *
    1175   * When DMA logging is started a range of IOVAs to monitor is provided and the
    1176   * device can optimize its logging to cover only the IOVA range given. Each
    1177   * DMA that the device initiates inside the range will be logged by the device
    1178   * for later retrieval.
    1179   *
    1180   * page_size is an input that hints what tracking granularity the device
    1181   * should try to achieve. If the device cannot do the hinted page size then
    1182   * it's the driver choice which page size to pick based on its support.
    1183   * On output the device will return the page size it selected.
    1184   *
    1185   * ranges is a pointer to an array of
    1186   * struct vfio_device_feature_dma_logging_range.
    1187   *
    1188   * The core kernel code guarantees to support by minimum num_ranges that fit
    1189   * into a single kernel page. User space can try higher values but should give
    1190   * up if the above can't be achieved as of some driver limitations.
    1191   *
    1192   * A single call to start device DMA logging can be issued and a matching stop
    1193   * should follow at the end. Another start is not allowed in the meantime.
    1194   */
    1195  struct vfio_device_feature_dma_logging_control {
    1196  	__aligned_u64 page_size;
    1197  	__u32 num_ranges;
    1198  	__u32 __reserved;
    1199  	__aligned_u64 ranges;
    1200  };
    1201  
    1202  struct vfio_device_feature_dma_logging_range {
    1203  	__aligned_u64 iova;
    1204  	__aligned_u64 length;
    1205  };
    1206  
    1207  #define VFIO_DEVICE_FEATURE_DMA_LOGGING_START 6
    1208  
    1209  /*
    1210   * Upon VFIO_DEVICE_FEATURE_SET stop device DMA logging that was started
    1211   * by VFIO_DEVICE_FEATURE_DMA_LOGGING_START
    1212   */
    1213  #define VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP 7
    1214  
    1215  /*
    1216   * Upon VFIO_DEVICE_FEATURE_GET read back and clear the device DMA log
    1217   *
    1218   * Query the device's DMA log for written pages within the given IOVA range.
    1219   * During querying the log is cleared for the IOVA range.
    1220   *
    1221   * bitmap is a pointer to an array of u64s that will hold the output bitmap
    1222   * with 1 bit reporting a page_size unit of IOVA. The mapping of IOVA to bits
    1223   * is given by:
    1224   *  bitmap[(addr - iova)/page_size] & (1ULL << (addr % 64))
    1225   *
    1226   * The input page_size can be any power of two value and does not have to
    1227   * match the value given to VFIO_DEVICE_FEATURE_DMA_LOGGING_START. The driver
    1228   * will format its internal logging to match the reporting page size, possibly
    1229   * by replicating bits if the internal page size is lower than requested.
    1230   *
    1231   * The LOGGING_REPORT will only set bits in the bitmap and never clear or
    1232   * perform any initialization of the user provided bitmap.
    1233   *
    1234   * If any error is returned userspace should assume that the dirty log is
    1235   * corrupted. Error recovery is to consider all memory dirty and try to
    1236   * restart the dirty tracking, or to abort/restart the whole migration.
    1237   *
    1238   * If DMA logging is not enabled, an error will be returned.
    1239   *
    1240   */
    1241  struct vfio_device_feature_dma_logging_report {
    1242  	__aligned_u64 iova;
    1243  	__aligned_u64 length;
    1244  	__aligned_u64 page_size;
    1245  	__aligned_u64 bitmap;
    1246  };
    1247  
    1248  #define VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT 8
    1249  
    1250  /*
    1251   * Upon VFIO_DEVICE_FEATURE_GET read back the estimated data length that will
    1252   * be required to complete stop copy.
    1253   *
    1254   * Note: Can be called on each device state.
    1255   */
    1256  
    1257  struct vfio_device_feature_mig_data_size {
    1258  	__aligned_u64 stop_copy_length;
    1259  };
    1260  
    1261  #define VFIO_DEVICE_FEATURE_MIG_DATA_SIZE 9
    1262  
    1263  /* -------- API for Type1 VFIO IOMMU -------- */
    1264  
    1265  /**
    1266   * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info)
    1267   *
    1268   * Retrieve information about the IOMMU object. Fills in provided
    1269   * struct vfio_iommu_info. Caller sets argsz.
    1270   *
    1271   * XXX Should we do these by CHECK_EXTENSION too?
    1272   */
    1273  struct vfio_iommu_type1_info {
    1274  	__u32	argsz;
    1275  	__u32	flags;
    1276  #define VFIO_IOMMU_INFO_PGSIZES (1 << 0)	/* supported page sizes info */
    1277  #define VFIO_IOMMU_INFO_CAPS	(1 << 1)	/* Info supports caps */
    1278  	__u64	iova_pgsizes;	/* Bitmap of supported page sizes */
    1279  	__u32   cap_offset;	/* Offset within info struct of first cap */
    1280  };
    1281  
    1282  /*
    1283   * The IOVA capability allows to report the valid IOVA range(s)
    1284   * excluding any non-relaxable reserved regions exposed by
    1285   * devices attached to the container. Any DMA map attempt
    1286   * outside the valid iova range will return error.
    1287   *
    1288   * The structures below define version 1 of this capability.
    1289   */
    1290  #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE  1
    1291  
    1292  struct vfio_iova_range {
    1293  	__u64	start;
    1294  	__u64	end;
    1295  };
    1296  
    1297  struct vfio_iommu_type1_info_cap_iova_range {
    1298  	struct	vfio_info_cap_header header;
    1299  	__u32	nr_iovas;
    1300  	__u32	reserved;
    1301  	struct	vfio_iova_range iova_ranges[];
    1302  };
    1303  
    1304  /*
    1305   * The migration capability allows to report supported features for migration.
    1306   *
    1307   * The structures below define version 1 of this capability.
    1308   *
    1309   * The existence of this capability indicates that IOMMU kernel driver supports
    1310   * dirty page logging.
    1311   *
    1312   * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty
    1313   * page logging.
    1314   * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap
    1315   * size in bytes that can be used by user applications when getting the dirty
    1316   * bitmap.
    1317   */
    1318  #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION  2
    1319  
    1320  struct vfio_iommu_type1_info_cap_migration {
    1321  	struct	vfio_info_cap_header header;
    1322  	__u32	flags;
    1323  	__u64	pgsize_bitmap;
    1324  	__u64	max_dirty_bitmap_size;		/* in bytes */
    1325  };
    1326  
    1327  /*
    1328   * The DMA available capability allows to report the current number of
    1329   * simultaneously outstanding DMA mappings that are allowed.
    1330   *
    1331   * The structure below defines version 1 of this capability.
    1332   *
    1333   * avail: specifies the current number of outstanding DMA mappings allowed.
    1334   */
    1335  #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3
    1336  
    1337  struct vfio_iommu_type1_info_dma_avail {
    1338  	struct	vfio_info_cap_header header;
    1339  	__u32	avail;
    1340  };
    1341  
    1342  #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
    1343  
    1344  /**
    1345   * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map)
    1346   *
    1347   * Map process virtual addresses to IO virtual addresses using the
    1348   * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required.
    1349   *
    1350   * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova. The vaddr
    1351   * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR.  To
    1352   * maintain memory consistency within the user application, the updated vaddr
    1353   * must address the same memory object as originally mapped.  Failure to do so
    1354   * will result in user memory corruption and/or device misbehavior.  iova and
    1355   * size must match those in the original MAP_DMA call.  Protection is not
    1356   * changed, and the READ & WRITE flags must be 0.
    1357   */
    1358  struct vfio_iommu_type1_dma_map {
    1359  	__u32	argsz;
    1360  	__u32	flags;
    1361  #define VFIO_DMA_MAP_FLAG_READ (1 << 0)		/* readable from device */
    1362  #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1)	/* writable from device */
    1363  #define VFIO_DMA_MAP_FLAG_VADDR (1 << 2)
    1364  	__u64	vaddr;				/* Process virtual address */
    1365  	__u64	iova;				/* IO virtual address */
    1366  	__u64	size;				/* Size of mapping (bytes) */
    1367  };
    1368  
    1369  #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)
    1370  
    1371  struct vfio_bitmap {
    1372  	__u64        pgsize;	/* page size for bitmap in bytes */
    1373  	__u64        size;	/* in bytes */
    1374  	__u64 *data;	/* one bit per page */
    1375  };
    1376  
    1377  /**
    1378   * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
    1379   *							struct vfio_dma_unmap)
    1380   *
    1381   * Unmap IO virtual addresses using the provided struct vfio_dma_unmap.
    1382   * Caller sets argsz.  The actual unmapped size is returned in the size
    1383   * field.  No guarantee is made to the user that arbitrary unmaps of iova
    1384   * or size different from those used in the original mapping call will
    1385   * succeed.
    1386   *
    1387   * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap
    1388   * before unmapping IO virtual addresses. When this flag is set, the user must
    1389   * provide a struct vfio_bitmap in data[]. User must provide zero-allocated
    1390   * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field.
    1391   * A bit in the bitmap represents one page, of user provided page size in
    1392   * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set
    1393   * indicates that the page at that offset from iova is dirty. A Bitmap of the
    1394   * pages in the range of unmapped size is returned in the user-provided
    1395   * vfio_bitmap.data.
    1396   *
    1397   * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses.  iova and size
    1398   * must be 0.  This cannot be combined with the get-dirty-bitmap flag.
    1399   *
    1400   * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host
    1401   * virtual addresses in the iova range.  DMA to already-mapped pages continues.
    1402   * Groups may not be added to the container while any addresses are invalid.
    1403   * This cannot be combined with the get-dirty-bitmap flag.
    1404   */
    1405  struct vfio_iommu_type1_dma_unmap {
    1406  	__u32	argsz;
    1407  	__u32	flags;
    1408  #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0)
    1409  #define VFIO_DMA_UNMAP_FLAG_ALL		     (1 << 1)
    1410  #define VFIO_DMA_UNMAP_FLAG_VADDR	     (1 << 2)
    1411  	__u64	iova;				/* IO virtual address */
    1412  	__u64	size;				/* Size of mapping (bytes) */
    1413  	__u8    data[];
    1414  };
    1415  
    1416  #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)
    1417  
    1418  /*
    1419   * IOCTLs to enable/disable IOMMU container usage.
    1420   * No parameters are supported.
    1421   */
    1422  #define VFIO_IOMMU_ENABLE	_IO(VFIO_TYPE, VFIO_BASE + 15)
    1423  #define VFIO_IOMMU_DISABLE	_IO(VFIO_TYPE, VFIO_BASE + 16)
    1424  
    1425  /**
    1426   * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
    1427   *                                     struct vfio_iommu_type1_dirty_bitmap)
    1428   * IOCTL is used for dirty pages logging.
    1429   * Caller should set flag depending on which operation to perform, details as
    1430   * below:
    1431   *
    1432   * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs
    1433   * the IOMMU driver to log pages that are dirtied or potentially dirtied by
    1434   * the device; designed to be used when a migration is in progress. Dirty pages
    1435   * are logged until logging is disabled by user application by calling the IOCTL
    1436   * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag.
    1437   *
    1438   * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs
    1439   * the IOMMU driver to stop logging dirtied pages.
    1440   *
    1441   * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set
    1442   * returns the dirty pages bitmap for IOMMU container for a given IOVA range.
    1443   * The user must specify the IOVA range and the pgsize through the structure
    1444   * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface
    1445   * supports getting a bitmap of the smallest supported pgsize only and can be
    1446   * modified in future to get a bitmap of any specified supported pgsize. The
    1447   * user must provide a zeroed memory area for the bitmap memory and specify its
    1448   * size in bitmap.size. One bit is used to represent one page consecutively
    1449   * starting from iova offset. The user should provide page size in bitmap.pgsize
    1450   * field. A bit set in the bitmap indicates that the page at that offset from
    1451   * iova is dirty. The caller must set argsz to a value including the size of
    1452   * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the
    1453   * actual bitmap. If dirty pages logging is not enabled, an error will be
    1454   * returned.
    1455   *
    1456   * Only one of the flags _START, _STOP and _GET may be specified at a time.
    1457   *
    1458   */
    1459  struct vfio_iommu_type1_dirty_bitmap {
    1460  	__u32        argsz;
    1461  	__u32        flags;
    1462  #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START	(1 << 0)
    1463  #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP	(1 << 1)
    1464  #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP	(1 << 2)
    1465  	__u8         data[];
    1466  };
    1467  
    1468  struct vfio_iommu_type1_dirty_bitmap_get {
    1469  	__u64              iova;	/* IO virtual address */
    1470  	__u64              size;	/* Size of iova range */
    1471  	struct vfio_bitmap bitmap;
    1472  };
    1473  
    1474  #define VFIO_IOMMU_DIRTY_PAGES             _IO(VFIO_TYPE, VFIO_BASE + 17)
    1475  
    1476  /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */
    1477  
    1478  /*
    1479   * The SPAPR TCE DDW info struct provides the information about
    1480   * the details of Dynamic DMA window capability.
    1481   *
    1482   * @pgsizes contains a page size bitmask, 4K/64K/16M are supported.
    1483   * @max_dynamic_windows_supported tells the maximum number of windows
    1484   * which the platform can create.
    1485   * @levels tells the maximum number of levels in multi-level IOMMU tables;
    1486   * this allows splitting a table into smaller chunks which reduces
    1487   * the amount of physically contiguous memory required for the table.
    1488   */
    1489  struct vfio_iommu_spapr_tce_ddw_info {
    1490  	__u64 pgsizes;			/* Bitmap of supported page sizes */
    1491  	__u32 max_dynamic_windows_supported;
    1492  	__u32 levels;
    1493  };
    1494  
    1495  /*
    1496   * The SPAPR TCE info struct provides the information about the PCI bus
    1497   * address ranges available for DMA, these values are programmed into
    1498   * the hardware so the guest has to know that information.
    1499   *
    1500   * The DMA 32 bit window start is an absolute PCI bus address.
    1501   * The IOVA address passed via map/unmap ioctls are absolute PCI bus
    1502   * addresses too so the window works as a filter rather than an offset
    1503   * for IOVA addresses.
    1504   *
    1505   * Flags supported:
    1506   * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows
    1507   *   (DDW) support is present. @ddw is only supported when DDW is present.
    1508   */
    1509  struct vfio_iommu_spapr_tce_info {
    1510  	__u32 argsz;
    1511  	__u32 flags;
    1512  #define VFIO_IOMMU_SPAPR_INFO_DDW	(1 << 0)	/* DDW supported */
    1513  	__u32 dma32_window_start;	/* 32 bit window start (bytes) */
    1514  	__u32 dma32_window_size;	/* 32 bit window size (bytes) */
    1515  	struct vfio_iommu_spapr_tce_ddw_info ddw;
    1516  };
    1517  
    1518  #define VFIO_IOMMU_SPAPR_TCE_GET_INFO	_IO(VFIO_TYPE, VFIO_BASE + 12)
    1519  
    1520  /*
    1521   * EEH PE operation struct provides ways to:
    1522   * - enable/disable EEH functionality;
    1523   * - unfreeze IO/DMA for frozen PE;
    1524   * - read PE state;
    1525   * - reset PE;
    1526   * - configure PE;
    1527   * - inject EEH error.
    1528   */
    1529  struct vfio_eeh_pe_err {
    1530  	__u32 type;
    1531  	__u32 func;
    1532  	__u64 addr;
    1533  	__u64 mask;
    1534  };
    1535  
    1536  struct vfio_eeh_pe_op {
    1537  	__u32 argsz;
    1538  	__u32 flags;
    1539  	__u32 op;
    1540  	union {
    1541  		struct vfio_eeh_pe_err err;
    1542  	};
    1543  };
    1544  
    1545  #define VFIO_EEH_PE_DISABLE		0	/* Disable EEH functionality */
    1546  #define VFIO_EEH_PE_ENABLE		1	/* Enable EEH functionality  */
    1547  #define VFIO_EEH_PE_UNFREEZE_IO		2	/* Enable IO for frozen PE   */
    1548  #define VFIO_EEH_PE_UNFREEZE_DMA	3	/* Enable DMA for frozen PE  */
    1549  #define VFIO_EEH_PE_GET_STATE		4	/* PE state retrieval        */
    1550  #define  VFIO_EEH_PE_STATE_NORMAL	0	/* PE in functional state    */
    1551  #define  VFIO_EEH_PE_STATE_RESET	1	/* PE reset in progress      */
    1552  #define  VFIO_EEH_PE_STATE_STOPPED	2	/* Stopped DMA and IO        */
    1553  #define  VFIO_EEH_PE_STATE_STOPPED_DMA	4	/* Stopped DMA only          */
    1554  #define  VFIO_EEH_PE_STATE_UNAVAIL	5	/* State unavailable         */
    1555  #define VFIO_EEH_PE_RESET_DEACTIVATE	5	/* Deassert PE reset         */
    1556  #define VFIO_EEH_PE_RESET_HOT		6	/* Assert hot reset          */
    1557  #define VFIO_EEH_PE_RESET_FUNDAMENTAL	7	/* Assert fundamental reset  */
    1558  #define VFIO_EEH_PE_CONFIGURE		8	/* PE configuration          */
    1559  #define VFIO_EEH_PE_INJECT_ERR		9	/* Inject EEH error          */
    1560  
    1561  #define VFIO_EEH_PE_OP			_IO(VFIO_TYPE, VFIO_BASE + 21)
    1562  
    1563  /**
    1564   * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory)
    1565   *
    1566   * Registers user space memory where DMA is allowed. It pins
    1567   * user pages and does the locked memory accounting so
    1568   * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls
    1569   * get faster.
    1570   */
    1571  struct vfio_iommu_spapr_register_memory {
    1572  	__u32	argsz;
    1573  	__u32	flags;
    1574  	__u64	vaddr;				/* Process virtual address */
    1575  	__u64	size;				/* Size of mapping (bytes) */
    1576  };
    1577  #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY	_IO(VFIO_TYPE, VFIO_BASE + 17)
    1578  
    1579  /**
    1580   * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory)
    1581   *
    1582   * Unregisters user space memory registered with
    1583   * VFIO_IOMMU_SPAPR_REGISTER_MEMORY.
    1584   * Uses vfio_iommu_spapr_register_memory for parameters.
    1585   */
    1586  #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY	_IO(VFIO_TYPE, VFIO_BASE + 18)
    1587  
    1588  /**
    1589   * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create)
    1590   *
    1591   * Creates an additional TCE table and programs it (sets a new DMA window)
    1592   * to every IOMMU group in the container. It receives page shift, window
    1593   * size and number of levels in the TCE table being created.
    1594   *
    1595   * It allocates and returns an offset on a PCI bus of the new DMA window.
    1596   */
    1597  struct vfio_iommu_spapr_tce_create {
    1598  	__u32 argsz;
    1599  	__u32 flags;
    1600  	/* in */
    1601  	__u32 page_shift;
    1602  	__u32 __resv1;
    1603  	__u64 window_size;
    1604  	__u32 levels;
    1605  	__u32 __resv2;
    1606  	/* out */
    1607  	__u64 start_addr;
    1608  };
    1609  #define VFIO_IOMMU_SPAPR_TCE_CREATE	_IO(VFIO_TYPE, VFIO_BASE + 19)
    1610  
    1611  /**
    1612   * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove)
    1613   *
    1614   * Unprograms a TCE table from all groups in the container and destroys it.
    1615   * It receives a PCI bus offset as a window id.
    1616   */
    1617  struct vfio_iommu_spapr_tce_remove {
    1618  	__u32 argsz;
    1619  	__u32 flags;
    1620  	/* in */
    1621  	__u64 start_addr;
    1622  };
    1623  #define VFIO_IOMMU_SPAPR_TCE_REMOVE	_IO(VFIO_TYPE, VFIO_BASE + 20)
    1624  
    1625  /* ***************************************************************** */
    1626  
    1627  #endif /* VFIO_H */