linux-headers (unknown)

(root)/
include/
linux/
perf_event.h
       1  /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
       2  /*
       3   * Performance events:
       4   *
       5   *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
       6   *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
       7   *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
       8   *
       9   * Data type definitions, declarations, prototypes.
      10   *
      11   *    Started by: Thomas Gleixner and Ingo Molnar
      12   *
      13   * For licencing details see kernel-base/COPYING
      14   */
      15  #ifndef _LINUX_PERF_EVENT_H
      16  #define _LINUX_PERF_EVENT_H
      17  
      18  #include <linux/types.h>
      19  #include <linux/ioctl.h>
      20  #include <asm/byteorder.h>
      21  
      22  /*
      23   * User-space ABI bits:
      24   */
      25  
      26  /*
      27   * attr.type
      28   */
      29  enum perf_type_id {
      30  	PERF_TYPE_HARDWARE			= 0,
      31  	PERF_TYPE_SOFTWARE			= 1,
      32  	PERF_TYPE_TRACEPOINT			= 2,
      33  	PERF_TYPE_HW_CACHE			= 3,
      34  	PERF_TYPE_RAW				= 4,
      35  	PERF_TYPE_BREAKPOINT			= 5,
      36  
      37  	PERF_TYPE_MAX,				/* non-ABI */
      38  };
      39  
      40  /*
      41   * attr.config layout for type PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
      42   * PERF_TYPE_HARDWARE:			0xEEEEEEEE000000AA
      43   *					AA: hardware event ID
      44   *					EEEEEEEE: PMU type ID
      45   * PERF_TYPE_HW_CACHE:			0xEEEEEEEE00DDCCBB
      46   *					BB: hardware cache ID
      47   *					CC: hardware cache op ID
      48   *					DD: hardware cache op result ID
      49   *					EEEEEEEE: PMU type ID
      50   * If the PMU type ID is 0, the PERF_TYPE_RAW will be applied.
      51   */
      52  #define PERF_PMU_TYPE_SHIFT		32
      53  #define PERF_HW_EVENT_MASK		0xffffffff
      54  
      55  /*
      56   * Generalized performance event event_id types, used by the
      57   * attr.event_id parameter of the sys_perf_event_open()
      58   * syscall:
      59   */
      60  enum perf_hw_id {
      61  	/*
      62  	 * Common hardware events, generalized by the kernel:
      63  	 */
      64  	PERF_COUNT_HW_CPU_CYCLES		= 0,
      65  	PERF_COUNT_HW_INSTRUCTIONS		= 1,
      66  	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
      67  	PERF_COUNT_HW_CACHE_MISSES		= 3,
      68  	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
      69  	PERF_COUNT_HW_BRANCH_MISSES		= 5,
      70  	PERF_COUNT_HW_BUS_CYCLES		= 6,
      71  	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
      72  	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
      73  	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
      74  
      75  	PERF_COUNT_HW_MAX,			/* non-ABI */
      76  };
      77  
      78  /*
      79   * Generalized hardware cache events:
      80   *
      81   *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
      82   *       { read, write, prefetch } x
      83   *       { accesses, misses }
      84   */
      85  enum perf_hw_cache_id {
      86  	PERF_COUNT_HW_CACHE_L1D			= 0,
      87  	PERF_COUNT_HW_CACHE_L1I			= 1,
      88  	PERF_COUNT_HW_CACHE_LL			= 2,
      89  	PERF_COUNT_HW_CACHE_DTLB		= 3,
      90  	PERF_COUNT_HW_CACHE_ITLB		= 4,
      91  	PERF_COUNT_HW_CACHE_BPU			= 5,
      92  	PERF_COUNT_HW_CACHE_NODE		= 6,
      93  
      94  	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
      95  };
      96  
      97  enum perf_hw_cache_op_id {
      98  	PERF_COUNT_HW_CACHE_OP_READ		= 0,
      99  	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
     100  	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
     101  
     102  	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
     103  };
     104  
     105  enum perf_hw_cache_op_result_id {
     106  	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
     107  	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
     108  
     109  	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
     110  };
     111  
     112  /*
     113   * Special "software" events provided by the kernel, even if the hardware
     114   * does not support performance events. These events measure various
     115   * physical and sw events of the kernel (and allow the profiling of them as
     116   * well):
     117   */
     118  enum perf_sw_ids {
     119  	PERF_COUNT_SW_CPU_CLOCK			= 0,
     120  	PERF_COUNT_SW_TASK_CLOCK		= 1,
     121  	PERF_COUNT_SW_PAGE_FAULTS		= 2,
     122  	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
     123  	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
     124  	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
     125  	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
     126  	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
     127  	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
     128  	PERF_COUNT_SW_DUMMY			= 9,
     129  	PERF_COUNT_SW_BPF_OUTPUT		= 10,
     130  	PERF_COUNT_SW_CGROUP_SWITCHES		= 11,
     131  
     132  	PERF_COUNT_SW_MAX,			/* non-ABI */
     133  };
     134  
     135  /*
     136   * Bits that can be set in attr.sample_type to request information
     137   * in the overflow packets.
     138   */
     139  enum perf_event_sample_format {
     140  	PERF_SAMPLE_IP				= 1U << 0,
     141  	PERF_SAMPLE_TID				= 1U << 1,
     142  	PERF_SAMPLE_TIME			= 1U << 2,
     143  	PERF_SAMPLE_ADDR			= 1U << 3,
     144  	PERF_SAMPLE_READ			= 1U << 4,
     145  	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
     146  	PERF_SAMPLE_ID				= 1U << 6,
     147  	PERF_SAMPLE_CPU				= 1U << 7,
     148  	PERF_SAMPLE_PERIOD			= 1U << 8,
     149  	PERF_SAMPLE_STREAM_ID			= 1U << 9,
     150  	PERF_SAMPLE_RAW				= 1U << 10,
     151  	PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
     152  	PERF_SAMPLE_REGS_USER			= 1U << 12,
     153  	PERF_SAMPLE_STACK_USER			= 1U << 13,
     154  	PERF_SAMPLE_WEIGHT			= 1U << 14,
     155  	PERF_SAMPLE_DATA_SRC			= 1U << 15,
     156  	PERF_SAMPLE_IDENTIFIER			= 1U << 16,
     157  	PERF_SAMPLE_TRANSACTION			= 1U << 17,
     158  	PERF_SAMPLE_REGS_INTR			= 1U << 18,
     159  	PERF_SAMPLE_PHYS_ADDR			= 1U << 19,
     160  	PERF_SAMPLE_AUX				= 1U << 20,
     161  	PERF_SAMPLE_CGROUP			= 1U << 21,
     162  	PERF_SAMPLE_DATA_PAGE_SIZE		= 1U << 22,
     163  	PERF_SAMPLE_CODE_PAGE_SIZE		= 1U << 23,
     164  	PERF_SAMPLE_WEIGHT_STRUCT		= 1U << 24,
     165  
     166  	PERF_SAMPLE_MAX = 1U << 25,		/* non-ABI */
     167  };
     168  
     169  #define PERF_SAMPLE_WEIGHT_TYPE	(PERF_SAMPLE_WEIGHT | PERF_SAMPLE_WEIGHT_STRUCT)
     170  /*
     171   * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
     172   *
     173   * If the user does not pass priv level information via branch_sample_type,
     174   * the kernel uses the event's priv level. Branch and event priv levels do
     175   * not have to match. Branch priv level is checked for permissions.
     176   *
     177   * The branch types can be combined, however BRANCH_ANY covers all types
     178   * of branches and therefore it supersedes all the other types.
     179   */
     180  enum perf_branch_sample_type_shift {
     181  	PERF_SAMPLE_BRANCH_USER_SHIFT		= 0, /* user branches */
     182  	PERF_SAMPLE_BRANCH_KERNEL_SHIFT		= 1, /* kernel branches */
     183  	PERF_SAMPLE_BRANCH_HV_SHIFT		= 2, /* hypervisor branches */
     184  
     185  	PERF_SAMPLE_BRANCH_ANY_SHIFT		= 3, /* any branch types */
     186  	PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT	= 4, /* any call branch */
     187  	PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT	= 5, /* any return branch */
     188  	PERF_SAMPLE_BRANCH_IND_CALL_SHIFT	= 6, /* indirect calls */
     189  	PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT	= 7, /* transaction aborts */
     190  	PERF_SAMPLE_BRANCH_IN_TX_SHIFT		= 8, /* in transaction */
     191  	PERF_SAMPLE_BRANCH_NO_TX_SHIFT		= 9, /* not in transaction */
     192  	PERF_SAMPLE_BRANCH_COND_SHIFT		= 10, /* conditional branches */
     193  
     194  	PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT	= 11, /* call/ret stack */
     195  	PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT	= 12, /* indirect jumps */
     196  	PERF_SAMPLE_BRANCH_CALL_SHIFT		= 13, /* direct call */
     197  
     198  	PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT	= 14, /* no flags */
     199  	PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT	= 15, /* no cycles */
     200  
     201  	PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT	= 16, /* save branch type */
     202  
     203  	PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT	= 17, /* save low level index of raw branch records */
     204  
     205  	PERF_SAMPLE_BRANCH_PRIV_SAVE_SHIFT	= 18, /* save privilege mode */
     206  
     207  	PERF_SAMPLE_BRANCH_MAX_SHIFT		/* non-ABI */
     208  };
     209  
     210  enum perf_branch_sample_type {
     211  	PERF_SAMPLE_BRANCH_USER		= 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
     212  	PERF_SAMPLE_BRANCH_KERNEL	= 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
     213  	PERF_SAMPLE_BRANCH_HV		= 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
     214  
     215  	PERF_SAMPLE_BRANCH_ANY		= 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
     216  	PERF_SAMPLE_BRANCH_ANY_CALL	= 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
     217  	PERF_SAMPLE_BRANCH_ANY_RETURN	= 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
     218  	PERF_SAMPLE_BRANCH_IND_CALL	= 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
     219  	PERF_SAMPLE_BRANCH_ABORT_TX	= 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
     220  	PERF_SAMPLE_BRANCH_IN_TX	= 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
     221  	PERF_SAMPLE_BRANCH_NO_TX	= 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
     222  	PERF_SAMPLE_BRANCH_COND		= 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
     223  
     224  	PERF_SAMPLE_BRANCH_CALL_STACK	= 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
     225  	PERF_SAMPLE_BRANCH_IND_JUMP	= 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
     226  	PERF_SAMPLE_BRANCH_CALL		= 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
     227  
     228  	PERF_SAMPLE_BRANCH_NO_FLAGS	= 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
     229  	PERF_SAMPLE_BRANCH_NO_CYCLES	= 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
     230  
     231  	PERF_SAMPLE_BRANCH_TYPE_SAVE	=
     232  		1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
     233  
     234  	PERF_SAMPLE_BRANCH_HW_INDEX	= 1U << PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT,
     235  
     236  	PERF_SAMPLE_BRANCH_PRIV_SAVE	= 1U << PERF_SAMPLE_BRANCH_PRIV_SAVE_SHIFT,
     237  
     238  	PERF_SAMPLE_BRANCH_MAX		= 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
     239  };
     240  
     241  /*
     242   * Common flow change classification
     243   */
     244  enum {
     245  	PERF_BR_UNKNOWN		= 0,	/* unknown */
     246  	PERF_BR_COND		= 1,	/* conditional */
     247  	PERF_BR_UNCOND		= 2,	/* unconditional  */
     248  	PERF_BR_IND		= 3,	/* indirect */
     249  	PERF_BR_CALL		= 4,	/* function call */
     250  	PERF_BR_IND_CALL	= 5,	/* indirect function call */
     251  	PERF_BR_RET		= 6,	/* function return */
     252  	PERF_BR_SYSCALL		= 7,	/* syscall */
     253  	PERF_BR_SYSRET		= 8,	/* syscall return */
     254  	PERF_BR_COND_CALL	= 9,	/* conditional function call */
     255  	PERF_BR_COND_RET	= 10,	/* conditional function return */
     256  	PERF_BR_ERET		= 11,	/* exception return */
     257  	PERF_BR_IRQ		= 12,	/* irq */
     258  	PERF_BR_SERROR		= 13,	/* system error */
     259  	PERF_BR_NO_TX		= 14,	/* not in transaction */
     260  	PERF_BR_EXTEND_ABI	= 15,	/* extend ABI */
     261  	PERF_BR_MAX,
     262  };
     263  
     264  /*
     265   * Common branch speculation outcome classification
     266   */
     267  enum {
     268  	PERF_BR_SPEC_NA			= 0,	/* Not available */
     269  	PERF_BR_SPEC_WRONG_PATH		= 1,	/* Speculative but on wrong path */
     270  	PERF_BR_NON_SPEC_CORRECT_PATH	= 2,	/* Non-speculative but on correct path */
     271  	PERF_BR_SPEC_CORRECT_PATH	= 3,	/* Speculative and on correct path */
     272  	PERF_BR_SPEC_MAX,
     273  };
     274  
     275  enum {
     276  	PERF_BR_NEW_FAULT_ALGN		= 0,    /* Alignment fault */
     277  	PERF_BR_NEW_FAULT_DATA		= 1,    /* Data fault */
     278  	PERF_BR_NEW_FAULT_INST		= 2,    /* Inst fault */
     279  	PERF_BR_NEW_ARCH_1		= 3,    /* Architecture specific */
     280  	PERF_BR_NEW_ARCH_2		= 4,    /* Architecture specific */
     281  	PERF_BR_NEW_ARCH_3		= 5,    /* Architecture specific */
     282  	PERF_BR_NEW_ARCH_4		= 6,    /* Architecture specific */
     283  	PERF_BR_NEW_ARCH_5		= 7,    /* Architecture specific */
     284  	PERF_BR_NEW_MAX,
     285  };
     286  
     287  enum {
     288  	PERF_BR_PRIV_UNKNOWN	= 0,
     289  	PERF_BR_PRIV_USER	= 1,
     290  	PERF_BR_PRIV_KERNEL	= 2,
     291  	PERF_BR_PRIV_HV		= 3,
     292  };
     293  
     294  #define PERF_BR_ARM64_FIQ		PERF_BR_NEW_ARCH_1
     295  #define PERF_BR_ARM64_DEBUG_HALT	PERF_BR_NEW_ARCH_2
     296  #define PERF_BR_ARM64_DEBUG_EXIT	PERF_BR_NEW_ARCH_3
     297  #define PERF_BR_ARM64_DEBUG_INST	PERF_BR_NEW_ARCH_4
     298  #define PERF_BR_ARM64_DEBUG_DATA	PERF_BR_NEW_ARCH_5
     299  
     300  #define PERF_SAMPLE_BRANCH_PLM_ALL \
     301  	(PERF_SAMPLE_BRANCH_USER|\
     302  	 PERF_SAMPLE_BRANCH_KERNEL|\
     303  	 PERF_SAMPLE_BRANCH_HV)
     304  
     305  /*
     306   * Values to determine ABI of the registers dump.
     307   */
     308  enum perf_sample_regs_abi {
     309  	PERF_SAMPLE_REGS_ABI_NONE	= 0,
     310  	PERF_SAMPLE_REGS_ABI_32		= 1,
     311  	PERF_SAMPLE_REGS_ABI_64		= 2,
     312  };
     313  
     314  /*
     315   * Values for the memory transaction event qualifier, mostly for
     316   * abort events. Multiple bits can be set.
     317   */
     318  enum {
     319  	PERF_TXN_ELISION        = (1 << 0), /* From elision */
     320  	PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
     321  	PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
     322  	PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
     323  	PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
     324  	PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
     325  	PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
     326  	PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
     327  
     328  	PERF_TXN_MAX	        = (1 << 8), /* non-ABI */
     329  
     330  	/* bits 32..63 are reserved for the abort code */
     331  
     332  	PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
     333  	PERF_TXN_ABORT_SHIFT = 32,
     334  };
     335  
     336  /*
     337   * The format of the data returned by read() on a perf event fd,
     338   * as specified by attr.read_format:
     339   *
     340   * struct read_format {
     341   *	{ u64		value;
     342   *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
     343   *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
     344   *	  { u64		id;           } && PERF_FORMAT_ID
     345   *	  { u64		lost;         } && PERF_FORMAT_LOST
     346   *	} && !PERF_FORMAT_GROUP
     347   *
     348   *	{ u64		nr;
     349   *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
     350   *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
     351   *	  { u64		value;
     352   *	    { u64	id;           } && PERF_FORMAT_ID
     353   *	    { u64	lost;         } && PERF_FORMAT_LOST
     354   *	  }		cntr[nr];
     355   *	} && PERF_FORMAT_GROUP
     356   * };
     357   */
     358  enum perf_event_read_format {
     359  	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
     360  	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
     361  	PERF_FORMAT_ID				= 1U << 2,
     362  	PERF_FORMAT_GROUP			= 1U << 3,
     363  	PERF_FORMAT_LOST			= 1U << 4,
     364  
     365  	PERF_FORMAT_MAX = 1U << 5,		/* non-ABI */
     366  };
     367  
     368  #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
     369  #define PERF_ATTR_SIZE_VER1	72	/* add: config2 */
     370  #define PERF_ATTR_SIZE_VER2	80	/* add: branch_sample_type */
     371  #define PERF_ATTR_SIZE_VER3	96	/* add: sample_regs_user */
     372  					/* add: sample_stack_user */
     373  #define PERF_ATTR_SIZE_VER4	104	/* add: sample_regs_intr */
     374  #define PERF_ATTR_SIZE_VER5	112	/* add: aux_watermark */
     375  #define PERF_ATTR_SIZE_VER6	120	/* add: aux_sample_size */
     376  #define PERF_ATTR_SIZE_VER7	128	/* add: sig_data */
     377  #define PERF_ATTR_SIZE_VER8	136	/* add: config3 */
     378  
     379  /*
     380   * Hardware event_id to monitor via a performance monitoring event:
     381   *
     382   * @sample_max_stack: Max number of frame pointers in a callchain,
     383   *		      should be < /proc/sys/kernel/perf_event_max_stack
     384   */
     385  struct perf_event_attr {
     386  
     387  	/*
     388  	 * Major type: hardware/software/tracepoint/etc.
     389  	 */
     390  	__u32			type;
     391  
     392  	/*
     393  	 * Size of the attr structure, for fwd/bwd compat.
     394  	 */
     395  	__u32			size;
     396  
     397  	/*
     398  	 * Type specific configuration information.
     399  	 */
     400  	__u64			config;
     401  
     402  	union {
     403  		__u64		sample_period;
     404  		__u64		sample_freq;
     405  	};
     406  
     407  	__u64			sample_type;
     408  	__u64			read_format;
     409  
     410  	__u64			disabled       :  1, /* off by default        */
     411  				inherit	       :  1, /* children inherit it   */
     412  				pinned	       :  1, /* must always be on PMU */
     413  				exclusive      :  1, /* only group on PMU     */
     414  				exclude_user   :  1, /* don't count user      */
     415  				exclude_kernel :  1, /* ditto kernel          */
     416  				exclude_hv     :  1, /* ditto hypervisor      */
     417  				exclude_idle   :  1, /* don't count when idle */
     418  				mmap           :  1, /* include mmap data     */
     419  				comm	       :  1, /* include comm data     */
     420  				freq           :  1, /* use freq, not period  */
     421  				inherit_stat   :  1, /* per task counts       */
     422  				enable_on_exec :  1, /* next exec enables     */
     423  				task           :  1, /* trace fork/exit       */
     424  				watermark      :  1, /* wakeup_watermark      */
     425  				/*
     426  				 * precise_ip:
     427  				 *
     428  				 *  0 - SAMPLE_IP can have arbitrary skid
     429  				 *  1 - SAMPLE_IP must have constant skid
     430  				 *  2 - SAMPLE_IP requested to have 0 skid
     431  				 *  3 - SAMPLE_IP must have 0 skid
     432  				 *
     433  				 *  See also PERF_RECORD_MISC_EXACT_IP
     434  				 */
     435  				precise_ip     :  2, /* skid constraint       */
     436  				mmap_data      :  1, /* non-exec mmap data    */
     437  				sample_id_all  :  1, /* sample_type all events */
     438  
     439  				exclude_host   :  1, /* don't count in host   */
     440  				exclude_guest  :  1, /* don't count in guest  */
     441  
     442  				exclude_callchain_kernel : 1, /* exclude kernel callchains */
     443  				exclude_callchain_user   : 1, /* exclude user callchains */
     444  				mmap2          :  1, /* include mmap with inode data     */
     445  				comm_exec      :  1, /* flag comm events that are due to an exec */
     446  				use_clockid    :  1, /* use @clockid for time fields */
     447  				context_switch :  1, /* context switch data */
     448  				write_backward :  1, /* Write ring buffer from end to beginning */
     449  				namespaces     :  1, /* include namespaces data */
     450  				ksymbol        :  1, /* include ksymbol events */
     451  				bpf_event      :  1, /* include bpf events */
     452  				aux_output     :  1, /* generate AUX records instead of events */
     453  				cgroup         :  1, /* include cgroup events */
     454  				text_poke      :  1, /* include text poke events */
     455  				build_id       :  1, /* use build id in mmap2 events */
     456  				inherit_thread :  1, /* children only inherit if cloned with CLONE_THREAD */
     457  				remove_on_exec :  1, /* event is removed from task on exec */
     458  				sigtrap        :  1, /* send synchronous SIGTRAP on event */
     459  				__reserved_1   : 26;
     460  
     461  	union {
     462  		__u32		wakeup_events;	  /* wakeup every n events */
     463  		__u32		wakeup_watermark; /* bytes before wakeup   */
     464  	};
     465  
     466  	__u32			bp_type;
     467  	union {
     468  		__u64		bp_addr;
     469  		__u64		kprobe_func; /* for perf_kprobe */
     470  		__u64		uprobe_path; /* for perf_uprobe */
     471  		__u64		config1; /* extension of config */
     472  	};
     473  	union {
     474  		__u64		bp_len;
     475  		__u64		kprobe_addr; /* when kprobe_func == NULL */
     476  		__u64		probe_offset; /* for perf_[k,u]probe */
     477  		__u64		config2; /* extension of config1 */
     478  	};
     479  	__u64	branch_sample_type; /* enum perf_branch_sample_type */
     480  
     481  	/*
     482  	 * Defines set of user regs to dump on samples.
     483  	 * See asm/perf_regs.h for details.
     484  	 */
     485  	__u64	sample_regs_user;
     486  
     487  	/*
     488  	 * Defines size of the user stack to dump on samples.
     489  	 */
     490  	__u32	sample_stack_user;
     491  
     492  	__s32	clockid;
     493  	/*
     494  	 * Defines set of regs to dump for each sample
     495  	 * state captured on:
     496  	 *  - precise = 0: PMU interrupt
     497  	 *  - precise > 0: sampled instruction
     498  	 *
     499  	 * See asm/perf_regs.h for details.
     500  	 */
     501  	__u64	sample_regs_intr;
     502  
     503  	/*
     504  	 * Wakeup watermark for AUX area
     505  	 */
     506  	__u32	aux_watermark;
     507  	__u16	sample_max_stack;
     508  	__u16	__reserved_2;
     509  	__u32	aux_sample_size;
     510  	__u32	__reserved_3;
     511  
     512  	/*
     513  	 * User provided data if sigtrap=1, passed back to user via
     514  	 * siginfo_t::si_perf_data, e.g. to permit user to identify the event.
     515  	 * Note, siginfo_t::si_perf_data is long-sized, and sig_data will be
     516  	 * truncated accordingly on 32 bit architectures.
     517  	 */
     518  	__u64	sig_data;
     519  
     520  	__u64	config3; /* extension of config2 */
     521  };
     522  
     523  /*
     524   * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
     525   * to query bpf programs attached to the same perf tracepoint
     526   * as the given perf event.
     527   */
     528  struct perf_event_query_bpf {
     529  	/*
     530  	 * The below ids array length
     531  	 */
     532  	__u32	ids_len;
     533  	/*
     534  	 * Set by the kernel to indicate the number of
     535  	 * available programs
     536  	 */
     537  	__u32	prog_cnt;
     538  	/*
     539  	 * User provided buffer to store program ids
     540  	 */
     541  	__u32	ids[];
     542  };
     543  
     544  /*
     545   * Ioctls that can be done on a perf event fd:
     546   */
     547  #define PERF_EVENT_IOC_ENABLE			_IO ('$', 0)
     548  #define PERF_EVENT_IOC_DISABLE			_IO ('$', 1)
     549  #define PERF_EVENT_IOC_REFRESH			_IO ('$', 2)
     550  #define PERF_EVENT_IOC_RESET			_IO ('$', 3)
     551  #define PERF_EVENT_IOC_PERIOD			_IOW('$', 4, __u64)
     552  #define PERF_EVENT_IOC_SET_OUTPUT		_IO ('$', 5)
     553  #define PERF_EVENT_IOC_SET_FILTER		_IOW('$', 6, char *)
     554  #define PERF_EVENT_IOC_ID			_IOR('$', 7, __u64 *)
     555  #define PERF_EVENT_IOC_SET_BPF			_IOW('$', 8, __u32)
     556  #define PERF_EVENT_IOC_PAUSE_OUTPUT		_IOW('$', 9, __u32)
     557  #define PERF_EVENT_IOC_QUERY_BPF		_IOWR('$', 10, struct perf_event_query_bpf *)
     558  #define PERF_EVENT_IOC_MODIFY_ATTRIBUTES	_IOW('$', 11, struct perf_event_attr *)
     559  
     560  enum perf_event_ioc_flags {
     561  	PERF_IOC_FLAG_GROUP		= 1U << 0,
     562  };
     563  
     564  /*
     565   * Structure of the page that can be mapped via mmap
     566   */
     567  struct perf_event_mmap_page {
     568  	__u32	version;		/* version number of this structure */
     569  	__u32	compat_version;		/* lowest version this is compat with */
     570  
     571  	/*
     572  	 * Bits needed to read the hw events in user-space.
     573  	 *
     574  	 *   u32 seq, time_mult, time_shift, index, width;
     575  	 *   u64 count, enabled, running;
     576  	 *   u64 cyc, time_offset;
     577  	 *   s64 pmc = 0;
     578  	 *
     579  	 *   do {
     580  	 *     seq = pc->lock;
     581  	 *     barrier()
     582  	 *
     583  	 *     enabled = pc->time_enabled;
     584  	 *     running = pc->time_running;
     585  	 *
     586  	 *     if (pc->cap_usr_time && enabled != running) {
     587  	 *       cyc = rdtsc();
     588  	 *       time_offset = pc->time_offset;
     589  	 *       time_mult   = pc->time_mult;
     590  	 *       time_shift  = pc->time_shift;
     591  	 *     }
     592  	 *
     593  	 *     index = pc->index;
     594  	 *     count = pc->offset;
     595  	 *     if (pc->cap_user_rdpmc && index) {
     596  	 *       width = pc->pmc_width;
     597  	 *       pmc = rdpmc(index - 1);
     598  	 *     }
     599  	 *
     600  	 *     barrier();
     601  	 *   } while (pc->lock != seq);
     602  	 *
     603  	 * NOTE: for obvious reason this only works on self-monitoring
     604  	 *       processes.
     605  	 */
     606  	__u32	lock;			/* seqlock for synchronization */
     607  	__u32	index;			/* hardware event identifier */
     608  	__s64	offset;			/* add to hardware event value */
     609  	__u64	time_enabled;		/* time event active */
     610  	__u64	time_running;		/* time event on cpu */
     611  	union {
     612  		__u64	capabilities;
     613  		struct {
     614  			__u64	cap_bit0		: 1, /* Always 0, deprecated, see commit 860f085b74e9 */
     615  				cap_bit0_is_deprecated	: 1, /* Always 1, signals that bit 0 is zero */
     616  
     617  				cap_user_rdpmc		: 1, /* The RDPMC instruction can be used to read counts */
     618  				cap_user_time		: 1, /* The time_{shift,mult,offset} fields are used */
     619  				cap_user_time_zero	: 1, /* The time_zero field is used */
     620  				cap_user_time_short	: 1, /* the time_{cycle,mask} fields are used */
     621  				cap_____res		: 58;
     622  		};
     623  	};
     624  
     625  	/*
     626  	 * If cap_user_rdpmc this field provides the bit-width of the value
     627  	 * read using the rdpmc() or equivalent instruction. This can be used
     628  	 * to sign extend the result like:
     629  	 *
     630  	 *   pmc <<= 64 - width;
     631  	 *   pmc >>= 64 - width; // signed shift right
     632  	 *   count += pmc;
     633  	 */
     634  	__u16	pmc_width;
     635  
     636  	/*
     637  	 * If cap_usr_time the below fields can be used to compute the time
     638  	 * delta since time_enabled (in ns) using rdtsc or similar.
     639  	 *
     640  	 *   u64 quot, rem;
     641  	 *   u64 delta;
     642  	 *
     643  	 *   quot = (cyc >> time_shift);
     644  	 *   rem = cyc & (((u64)1 << time_shift) - 1);
     645  	 *   delta = time_offset + quot * time_mult +
     646  	 *              ((rem * time_mult) >> time_shift);
     647  	 *
     648  	 * Where time_offset,time_mult,time_shift and cyc are read in the
     649  	 * seqcount loop described above. This delta can then be added to
     650  	 * enabled and possible running (if index), improving the scaling:
     651  	 *
     652  	 *   enabled += delta;
     653  	 *   if (index)
     654  	 *     running += delta;
     655  	 *
     656  	 *   quot = count / running;
     657  	 *   rem  = count % running;
     658  	 *   count = quot * enabled + (rem * enabled) / running;
     659  	 */
     660  	__u16	time_shift;
     661  	__u32	time_mult;
     662  	__u64	time_offset;
     663  	/*
     664  	 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
     665  	 * from sample timestamps.
     666  	 *
     667  	 *   time = timestamp - time_zero;
     668  	 *   quot = time / time_mult;
     669  	 *   rem  = time % time_mult;
     670  	 *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
     671  	 *
     672  	 * And vice versa:
     673  	 *
     674  	 *   quot = cyc >> time_shift;
     675  	 *   rem  = cyc & (((u64)1 << time_shift) - 1);
     676  	 *   timestamp = time_zero + quot * time_mult +
     677  	 *               ((rem * time_mult) >> time_shift);
     678  	 */
     679  	__u64	time_zero;
     680  
     681  	__u32	size;			/* Header size up to __reserved[] fields. */
     682  	__u32	__reserved_1;
     683  
     684  	/*
     685  	 * If cap_usr_time_short, the hardware clock is less than 64bit wide
     686  	 * and we must compute the 'cyc' value, as used by cap_usr_time, as:
     687  	 *
     688  	 *   cyc = time_cycles + ((cyc - time_cycles) & time_mask)
     689  	 *
     690  	 * NOTE: this form is explicitly chosen such that cap_usr_time_short
     691  	 *       is a correction on top of cap_usr_time, and code that doesn't
     692  	 *       know about cap_usr_time_short still works under the assumption
     693  	 *       the counter doesn't wrap.
     694  	 */
     695  	__u64	time_cycles;
     696  	__u64	time_mask;
     697  
     698  		/*
     699  		 * Hole for extension of the self monitor capabilities
     700  		 */
     701  
     702  	__u8	__reserved[116*8];	/* align to 1k. */
     703  
     704  	/*
     705  	 * Control data for the mmap() data buffer.
     706  	 *
     707  	 * User-space reading the @data_head value should issue an smp_rmb(),
     708  	 * after reading this value.
     709  	 *
     710  	 * When the mapping is PROT_WRITE the @data_tail value should be
     711  	 * written by userspace to reflect the last read data, after issueing
     712  	 * an smp_mb() to separate the data read from the ->data_tail store.
     713  	 * In this case the kernel will not over-write unread data.
     714  	 *
     715  	 * See perf_output_put_handle() for the data ordering.
     716  	 *
     717  	 * data_{offset,size} indicate the location and size of the perf record
     718  	 * buffer within the mmapped area.
     719  	 */
     720  	__u64   data_head;		/* head in the data section */
     721  	__u64	data_tail;		/* user-space written tail */
     722  	__u64	data_offset;		/* where the buffer starts */
     723  	__u64	data_size;		/* data buffer size */
     724  
     725  	/*
     726  	 * AUX area is defined by aux_{offset,size} fields that should be set
     727  	 * by the userspace, so that
     728  	 *
     729  	 *   aux_offset >= data_offset + data_size
     730  	 *
     731  	 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
     732  	 *
     733  	 * Ring buffer pointers aux_{head,tail} have the same semantics as
     734  	 * data_{head,tail} and same ordering rules apply.
     735  	 */
     736  	__u64	aux_head;
     737  	__u64	aux_tail;
     738  	__u64	aux_offset;
     739  	__u64	aux_size;
     740  };
     741  
     742  /*
     743   * The current state of perf_event_header::misc bits usage:
     744   * ('|' used bit, '-' unused bit)
     745   *
     746   *  012         CDEF
     747   *  |||---------||||
     748   *
     749   *  Where:
     750   *    0-2     CPUMODE_MASK
     751   *
     752   *    C       PROC_MAP_PARSE_TIMEOUT
     753   *    D       MMAP_DATA / COMM_EXEC / FORK_EXEC / SWITCH_OUT
     754   *    E       MMAP_BUILD_ID / EXACT_IP / SCHED_OUT_PREEMPT
     755   *    F       (reserved)
     756   */
     757  
     758  #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
     759  #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
     760  #define PERF_RECORD_MISC_KERNEL			(1 << 0)
     761  #define PERF_RECORD_MISC_USER			(2 << 0)
     762  #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
     763  #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
     764  #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
     765  
     766  /*
     767   * Indicates that /proc/PID/maps parsing are truncated by time out.
     768   */
     769  #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT	(1 << 12)
     770  /*
     771   * Following PERF_RECORD_MISC_* are used on different
     772   * events, so can reuse the same bit position:
     773   *
     774   *   PERF_RECORD_MISC_MMAP_DATA  - PERF_RECORD_MMAP* events
     775   *   PERF_RECORD_MISC_COMM_EXEC  - PERF_RECORD_COMM event
     776   *   PERF_RECORD_MISC_FORK_EXEC  - PERF_RECORD_FORK event (perf internal)
     777   *   PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
     778   */
     779  #define PERF_RECORD_MISC_MMAP_DATA		(1 << 13)
     780  #define PERF_RECORD_MISC_COMM_EXEC		(1 << 13)
     781  #define PERF_RECORD_MISC_FORK_EXEC		(1 << 13)
     782  #define PERF_RECORD_MISC_SWITCH_OUT		(1 << 13)
     783  /*
     784   * These PERF_RECORD_MISC_* flags below are safely reused
     785   * for the following events:
     786   *
     787   *   PERF_RECORD_MISC_EXACT_IP           - PERF_RECORD_SAMPLE of precise events
     788   *   PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
     789   *   PERF_RECORD_MISC_MMAP_BUILD_ID      - PERF_RECORD_MMAP2 event
     790   *
     791   *
     792   * PERF_RECORD_MISC_EXACT_IP:
     793   *   Indicates that the content of PERF_SAMPLE_IP points to
     794   *   the actual instruction that triggered the event. See also
     795   *   perf_event_attr::precise_ip.
     796   *
     797   * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
     798   *   Indicates that thread was preempted in TASK_RUNNING state.
     799   *
     800   * PERF_RECORD_MISC_MMAP_BUILD_ID:
     801   *   Indicates that mmap2 event carries build id data.
     802   */
     803  #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
     804  #define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT	(1 << 14)
     805  #define PERF_RECORD_MISC_MMAP_BUILD_ID		(1 << 14)
     806  /*
     807   * Reserve the last bit to indicate some extended misc field
     808   */
     809  #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
     810  
     811  struct perf_event_header {
     812  	__u32	type;
     813  	__u16	misc;
     814  	__u16	size;
     815  };
     816  
     817  struct perf_ns_link_info {
     818  	__u64	dev;
     819  	__u64	ino;
     820  };
     821  
     822  enum {
     823  	NET_NS_INDEX		= 0,
     824  	UTS_NS_INDEX		= 1,
     825  	IPC_NS_INDEX		= 2,
     826  	PID_NS_INDEX		= 3,
     827  	USER_NS_INDEX		= 4,
     828  	MNT_NS_INDEX		= 5,
     829  	CGROUP_NS_INDEX		= 6,
     830  
     831  	NR_NAMESPACES,		/* number of available namespaces */
     832  };
     833  
     834  enum perf_event_type {
     835  
     836  	/*
     837  	 * If perf_event_attr.sample_id_all is set then all event types will
     838  	 * have the sample_type selected fields related to where/when
     839  	 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
     840  	 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
     841  	 * just after the perf_event_header and the fields already present for
     842  	 * the existing fields, i.e. at the end of the payload. That way a newer
     843  	 * perf.data file will be supported by older perf tools, with these new
     844  	 * optional fields being ignored.
     845  	 *
     846  	 * struct sample_id {
     847  	 * 	{ u32			pid, tid; } && PERF_SAMPLE_TID
     848  	 * 	{ u64			time;     } && PERF_SAMPLE_TIME
     849  	 * 	{ u64			id;       } && PERF_SAMPLE_ID
     850  	 * 	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
     851  	 * 	{ u32			cpu, res; } && PERF_SAMPLE_CPU
     852  	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
     853  	 * } && perf_event_attr::sample_id_all
     854  	 *
     855  	 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
     856  	 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
     857  	 * relative to header.size.
     858  	 */
     859  
     860  	/*
     861  	 * The MMAP events record the PROT_EXEC mappings so that we can
     862  	 * correlate userspace IPs to code. They have the following structure:
     863  	 *
     864  	 * struct {
     865  	 *	struct perf_event_header	header;
     866  	 *
     867  	 *	u32				pid, tid;
     868  	 *	u64				addr;
     869  	 *	u64				len;
     870  	 *	u64				pgoff;
     871  	 *	char				filename[];
     872  	 * 	struct sample_id		sample_id;
     873  	 * };
     874  	 */
     875  	PERF_RECORD_MMAP			= 1,
     876  
     877  	/*
     878  	 * struct {
     879  	 *	struct perf_event_header	header;
     880  	 *	u64				id;
     881  	 *	u64				lost;
     882  	 * 	struct sample_id		sample_id;
     883  	 * };
     884  	 */
     885  	PERF_RECORD_LOST			= 2,
     886  
     887  	/*
     888  	 * struct {
     889  	 *	struct perf_event_header	header;
     890  	 *
     891  	 *	u32				pid, tid;
     892  	 *	char				comm[];
     893  	 * 	struct sample_id		sample_id;
     894  	 * };
     895  	 */
     896  	PERF_RECORD_COMM			= 3,
     897  
     898  	/*
     899  	 * struct {
     900  	 *	struct perf_event_header	header;
     901  	 *	u32				pid, ppid;
     902  	 *	u32				tid, ptid;
     903  	 *	u64				time;
     904  	 * 	struct sample_id		sample_id;
     905  	 * };
     906  	 */
     907  	PERF_RECORD_EXIT			= 4,
     908  
     909  	/*
     910  	 * struct {
     911  	 *	struct perf_event_header	header;
     912  	 *	u64				time;
     913  	 *	u64				id;
     914  	 *	u64				stream_id;
     915  	 * 	struct sample_id		sample_id;
     916  	 * };
     917  	 */
     918  	PERF_RECORD_THROTTLE			= 5,
     919  	PERF_RECORD_UNTHROTTLE			= 6,
     920  
     921  	/*
     922  	 * struct {
     923  	 *	struct perf_event_header	header;
     924  	 *	u32				pid, ppid;
     925  	 *	u32				tid, ptid;
     926  	 *	u64				time;
     927  	 * 	struct sample_id		sample_id;
     928  	 * };
     929  	 */
     930  	PERF_RECORD_FORK			= 7,
     931  
     932  	/*
     933  	 * struct {
     934  	 *	struct perf_event_header	header;
     935  	 *	u32				pid, tid;
     936  	 *
     937  	 *	struct read_format		values;
     938  	 * 	struct sample_id		sample_id;
     939  	 * };
     940  	 */
     941  	PERF_RECORD_READ			= 8,
     942  
     943  	/*
     944  	 * struct {
     945  	 *	struct perf_event_header	header;
     946  	 *
     947  	 *	#
     948  	 *	# Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
     949  	 *	# The advantage of PERF_SAMPLE_IDENTIFIER is that its position
     950  	 *	# is fixed relative to header.
     951  	 *	#
     952  	 *
     953  	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
     954  	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
     955  	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
     956  	 *	{ u64			time;     } && PERF_SAMPLE_TIME
     957  	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
     958  	 *	{ u64			id;	  } && PERF_SAMPLE_ID
     959  	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
     960  	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
     961  	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
     962  	 *
     963  	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
     964  	 *
     965  	 *	{ u64			nr,
     966  	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
     967  	 *
     968  	 *	#
     969  	 *	# The RAW record below is opaque data wrt the ABI
     970  	 *	#
     971  	 *	# That is, the ABI doesn't make any promises wrt to
     972  	 *	# the stability of its content, it may vary depending
     973  	 *	# on event, hardware, kernel version and phase of
     974  	 *	# the moon.
     975  	 *	#
     976  	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
     977  	 *	#
     978  	 *
     979  	 *	{ u32			size;
     980  	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
     981  	 *
     982  	 *	{ u64                   nr;
     983  	 *	  { u64	hw_idx; } && PERF_SAMPLE_BRANCH_HW_INDEX
     984  	 *        { u64 from, to, flags } lbr[nr];
     985  	 *      } && PERF_SAMPLE_BRANCH_STACK
     986  	 *
     987  	 * 	{ u64			abi; # enum perf_sample_regs_abi
     988  	 * 	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
     989  	 *
     990  	 * 	{ u64			size;
     991  	 * 	  char			data[size];
     992  	 * 	  u64			dyn_size; } && PERF_SAMPLE_STACK_USER
     993  	 *
     994  	 *	{ union perf_sample_weight
     995  	 *	 {
     996  	 *		u64		full; && PERF_SAMPLE_WEIGHT
     997  	 *	#if defined(__LITTLE_ENDIAN_BITFIELD)
     998  	 *		struct {
     999  	 *			u32	var1_dw;
    1000  	 *			u16	var2_w;
    1001  	 *			u16	var3_w;
    1002  	 *		} && PERF_SAMPLE_WEIGHT_STRUCT
    1003  	 *	#elif defined(__BIG_ENDIAN_BITFIELD)
    1004  	 *		struct {
    1005  	 *			u16	var3_w;
    1006  	 *			u16	var2_w;
    1007  	 *			u32	var1_dw;
    1008  	 *		} && PERF_SAMPLE_WEIGHT_STRUCT
    1009  	 *	#endif
    1010  	 *	 }
    1011  	 *	}
    1012  	 *	{ u64			data_src; } && PERF_SAMPLE_DATA_SRC
    1013  	 *	{ u64			transaction; } && PERF_SAMPLE_TRANSACTION
    1014  	 *	{ u64			abi; # enum perf_sample_regs_abi
    1015  	 *	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
    1016  	 *	{ u64			phys_addr;} && PERF_SAMPLE_PHYS_ADDR
    1017  	 *	{ u64			size;
    1018  	 *	  char			data[size]; } && PERF_SAMPLE_AUX
    1019  	 *	{ u64			data_page_size;} && PERF_SAMPLE_DATA_PAGE_SIZE
    1020  	 *	{ u64			code_page_size;} && PERF_SAMPLE_CODE_PAGE_SIZE
    1021  	 * };
    1022  	 */
    1023  	PERF_RECORD_SAMPLE			= 9,
    1024  
    1025  	/*
    1026  	 * The MMAP2 records are an augmented version of MMAP, they add
    1027  	 * maj, min, ino numbers to be used to uniquely identify each mapping
    1028  	 *
    1029  	 * struct {
    1030  	 *	struct perf_event_header	header;
    1031  	 *
    1032  	 *	u32				pid, tid;
    1033  	 *	u64				addr;
    1034  	 *	u64				len;
    1035  	 *	u64				pgoff;
    1036  	 *	union {
    1037  	 *		struct {
    1038  	 *			u32		maj;
    1039  	 *			u32		min;
    1040  	 *			u64		ino;
    1041  	 *			u64		ino_generation;
    1042  	 *		};
    1043  	 *		struct {
    1044  	 *			u8		build_id_size;
    1045  	 *			u8		__reserved_1;
    1046  	 *			u16		__reserved_2;
    1047  	 *			u8		build_id[20];
    1048  	 *		};
    1049  	 *	};
    1050  	 *	u32				prot, flags;
    1051  	 *	char				filename[];
    1052  	 * 	struct sample_id		sample_id;
    1053  	 * };
    1054  	 */
    1055  	PERF_RECORD_MMAP2			= 10,
    1056  
    1057  	/*
    1058  	 * Records that new data landed in the AUX buffer part.
    1059  	 *
    1060  	 * struct {
    1061  	 * 	struct perf_event_header	header;
    1062  	 *
    1063  	 * 	u64				aux_offset;
    1064  	 * 	u64				aux_size;
    1065  	 *	u64				flags;
    1066  	 * 	struct sample_id		sample_id;
    1067  	 * };
    1068  	 */
    1069  	PERF_RECORD_AUX				= 11,
    1070  
    1071  	/*
    1072  	 * Indicates that instruction trace has started
    1073  	 *
    1074  	 * struct {
    1075  	 *	struct perf_event_header	header;
    1076  	 *	u32				pid;
    1077  	 *	u32				tid;
    1078  	 *	struct sample_id		sample_id;
    1079  	 * };
    1080  	 */
    1081  	PERF_RECORD_ITRACE_START		= 12,
    1082  
    1083  	/*
    1084  	 * Records the dropped/lost sample number.
    1085  	 *
    1086  	 * struct {
    1087  	 *	struct perf_event_header	header;
    1088  	 *
    1089  	 *	u64				lost;
    1090  	 *	struct sample_id		sample_id;
    1091  	 * };
    1092  	 */
    1093  	PERF_RECORD_LOST_SAMPLES		= 13,
    1094  
    1095  	/*
    1096  	 * Records a context switch in or out (flagged by
    1097  	 * PERF_RECORD_MISC_SWITCH_OUT). See also
    1098  	 * PERF_RECORD_SWITCH_CPU_WIDE.
    1099  	 *
    1100  	 * struct {
    1101  	 *	struct perf_event_header	header;
    1102  	 *	struct sample_id		sample_id;
    1103  	 * };
    1104  	 */
    1105  	PERF_RECORD_SWITCH			= 14,
    1106  
    1107  	/*
    1108  	 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
    1109  	 * next_prev_tid that are the next (switching out) or previous
    1110  	 * (switching in) pid/tid.
    1111  	 *
    1112  	 * struct {
    1113  	 *	struct perf_event_header	header;
    1114  	 *	u32				next_prev_pid;
    1115  	 *	u32				next_prev_tid;
    1116  	 *	struct sample_id		sample_id;
    1117  	 * };
    1118  	 */
    1119  	PERF_RECORD_SWITCH_CPU_WIDE		= 15,
    1120  
    1121  	/*
    1122  	 * struct {
    1123  	 *	struct perf_event_header	header;
    1124  	 *	u32				pid;
    1125  	 *	u32				tid;
    1126  	 *	u64				nr_namespaces;
    1127  	 *	{ u64				dev, inode; } [nr_namespaces];
    1128  	 *	struct sample_id		sample_id;
    1129  	 * };
    1130  	 */
    1131  	PERF_RECORD_NAMESPACES			= 16,
    1132  
    1133  	/*
    1134  	 * Record ksymbol register/unregister events:
    1135  	 *
    1136  	 * struct {
    1137  	 *	struct perf_event_header	header;
    1138  	 *	u64				addr;
    1139  	 *	u32				len;
    1140  	 *	u16				ksym_type;
    1141  	 *	u16				flags;
    1142  	 *	char				name[];
    1143  	 *	struct sample_id		sample_id;
    1144  	 * };
    1145  	 */
    1146  	PERF_RECORD_KSYMBOL			= 17,
    1147  
    1148  	/*
    1149  	 * Record bpf events:
    1150  	 *  enum perf_bpf_event_type {
    1151  	 *	PERF_BPF_EVENT_UNKNOWN		= 0,
    1152  	 *	PERF_BPF_EVENT_PROG_LOAD	= 1,
    1153  	 *	PERF_BPF_EVENT_PROG_UNLOAD	= 2,
    1154  	 *  };
    1155  	 *
    1156  	 * struct {
    1157  	 *	struct perf_event_header	header;
    1158  	 *	u16				type;
    1159  	 *	u16				flags;
    1160  	 *	u32				id;
    1161  	 *	u8				tag[BPF_TAG_SIZE];
    1162  	 *	struct sample_id		sample_id;
    1163  	 * };
    1164  	 */
    1165  	PERF_RECORD_BPF_EVENT			= 18,
    1166  
    1167  	/*
    1168  	 * struct {
    1169  	 *	struct perf_event_header	header;
    1170  	 *	u64				id;
    1171  	 *	char				path[];
    1172  	 *	struct sample_id		sample_id;
    1173  	 * };
    1174  	 */
    1175  	PERF_RECORD_CGROUP			= 19,
    1176  
    1177  	/*
    1178  	 * Records changes to kernel text i.e. self-modified code. 'old_len' is
    1179  	 * the number of old bytes, 'new_len' is the number of new bytes. Either
    1180  	 * 'old_len' or 'new_len' may be zero to indicate, for example, the
    1181  	 * addition or removal of a trampoline. 'bytes' contains the old bytes
    1182  	 * followed immediately by the new bytes.
    1183  	 *
    1184  	 * struct {
    1185  	 *	struct perf_event_header	header;
    1186  	 *	u64				addr;
    1187  	 *	u16				old_len;
    1188  	 *	u16				new_len;
    1189  	 *	u8				bytes[];
    1190  	 *	struct sample_id		sample_id;
    1191  	 * };
    1192  	 */
    1193  	PERF_RECORD_TEXT_POKE			= 20,
    1194  
    1195  	/*
    1196  	 * Data written to the AUX area by hardware due to aux_output, may need
    1197  	 * to be matched to the event by an architecture-specific hardware ID.
    1198  	 * This records the hardware ID, but requires sample_id to provide the
    1199  	 * event ID. e.g. Intel PT uses this record to disambiguate PEBS-via-PT
    1200  	 * records from multiple events.
    1201  	 *
    1202  	 * struct {
    1203  	 *	struct perf_event_header	header;
    1204  	 *	u64				hw_id;
    1205  	 *	struct sample_id		sample_id;
    1206  	 * };
    1207  	 */
    1208  	PERF_RECORD_AUX_OUTPUT_HW_ID		= 21,
    1209  
    1210  	PERF_RECORD_MAX,			/* non-ABI */
    1211  };
    1212  
    1213  enum perf_record_ksymbol_type {
    1214  	PERF_RECORD_KSYMBOL_TYPE_UNKNOWN	= 0,
    1215  	PERF_RECORD_KSYMBOL_TYPE_BPF		= 1,
    1216  	/*
    1217  	 * Out of line code such as kprobe-replaced instructions or optimized
    1218  	 * kprobes or ftrace trampolines.
    1219  	 */
    1220  	PERF_RECORD_KSYMBOL_TYPE_OOL		= 2,
    1221  	PERF_RECORD_KSYMBOL_TYPE_MAX		/* non-ABI */
    1222  };
    1223  
    1224  #define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER	(1 << 0)
    1225  
    1226  enum perf_bpf_event_type {
    1227  	PERF_BPF_EVENT_UNKNOWN		= 0,
    1228  	PERF_BPF_EVENT_PROG_LOAD	= 1,
    1229  	PERF_BPF_EVENT_PROG_UNLOAD	= 2,
    1230  	PERF_BPF_EVENT_MAX,		/* non-ABI */
    1231  };
    1232  
    1233  #define PERF_MAX_STACK_DEPTH		127
    1234  #define PERF_MAX_CONTEXTS_PER_STACK	  8
    1235  
    1236  enum perf_callchain_context {
    1237  	PERF_CONTEXT_HV			= (__u64)-32,
    1238  	PERF_CONTEXT_KERNEL		= (__u64)-128,
    1239  	PERF_CONTEXT_USER		= (__u64)-512,
    1240  
    1241  	PERF_CONTEXT_GUEST		= (__u64)-2048,
    1242  	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
    1243  	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
    1244  
    1245  	PERF_CONTEXT_MAX		= (__u64)-4095,
    1246  };
    1247  
    1248  /**
    1249   * PERF_RECORD_AUX::flags bits
    1250   */
    1251  #define PERF_AUX_FLAG_TRUNCATED			0x01	/* record was truncated to fit */
    1252  #define PERF_AUX_FLAG_OVERWRITE			0x02	/* snapshot from overwrite mode */
    1253  #define PERF_AUX_FLAG_PARTIAL			0x04	/* record contains gaps */
    1254  #define PERF_AUX_FLAG_COLLISION			0x08	/* sample collided with another */
    1255  #define PERF_AUX_FLAG_PMU_FORMAT_TYPE_MASK	0xff00	/* PMU specific trace format type */
    1256  
    1257  /* CoreSight PMU AUX buffer formats */
    1258  #define PERF_AUX_FLAG_CORESIGHT_FORMAT_CORESIGHT	0x0000 /* Default for backward compatibility */
    1259  #define PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW		0x0100 /* Raw format of the source */
    1260  
    1261  #define PERF_FLAG_FD_NO_GROUP		(1UL << 0)
    1262  #define PERF_FLAG_FD_OUTPUT		(1UL << 1)
    1263  #define PERF_FLAG_PID_CGROUP		(1UL << 2) /* pid=cgroup id, per-cpu mode only */
    1264  #define PERF_FLAG_FD_CLOEXEC		(1UL << 3) /* O_CLOEXEC */
    1265  
    1266  #if defined(__LITTLE_ENDIAN_BITFIELD)
    1267  union perf_mem_data_src {
    1268  	__u64 val;
    1269  	struct {
    1270  		__u64   mem_op:5,	/* type of opcode */
    1271  			mem_lvl:14,	/* memory hierarchy level */
    1272  			mem_snoop:5,	/* snoop mode */
    1273  			mem_lock:2,	/* lock instr */
    1274  			mem_dtlb:7,	/* tlb access */
    1275  			mem_lvl_num:4,	/* memory hierarchy level number */
    1276  			mem_remote:1,   /* remote */
    1277  			mem_snoopx:2,	/* snoop mode, ext */
    1278  			mem_blk:3,	/* access blocked */
    1279  			mem_hops:3,	/* hop level */
    1280  			mem_rsvd:18;
    1281  	};
    1282  };
    1283  #elif defined(__BIG_ENDIAN_BITFIELD)
    1284  union perf_mem_data_src {
    1285  	__u64 val;
    1286  	struct {
    1287  		__u64	mem_rsvd:18,
    1288  			mem_hops:3,	/* hop level */
    1289  			mem_blk:3,	/* access blocked */
    1290  			mem_snoopx:2,	/* snoop mode, ext */
    1291  			mem_remote:1,   /* remote */
    1292  			mem_lvl_num:4,	/* memory hierarchy level number */
    1293  			mem_dtlb:7,	/* tlb access */
    1294  			mem_lock:2,	/* lock instr */
    1295  			mem_snoop:5,	/* snoop mode */
    1296  			mem_lvl:14,	/* memory hierarchy level */
    1297  			mem_op:5;	/* type of opcode */
    1298  	};
    1299  };
    1300  #else
    1301  #error "Unknown endianness"
    1302  #endif
    1303  
    1304  /* type of opcode (load/store/prefetch,code) */
    1305  #define PERF_MEM_OP_NA		0x01 /* not available */
    1306  #define PERF_MEM_OP_LOAD	0x02 /* load instruction */
    1307  #define PERF_MEM_OP_STORE	0x04 /* store instruction */
    1308  #define PERF_MEM_OP_PFETCH	0x08 /* prefetch */
    1309  #define PERF_MEM_OP_EXEC	0x10 /* code (execution) */
    1310  #define PERF_MEM_OP_SHIFT	0
    1311  
    1312  /*
    1313   * PERF_MEM_LVL_* namespace being depricated to some extent in the
    1314   * favour of newer composite PERF_MEM_{LVLNUM_,REMOTE_,SNOOPX_} fields.
    1315   * Supporting this namespace inorder to not break defined ABIs.
    1316   *
    1317   * memory hierarchy (memory level, hit or miss)
    1318   */
    1319  #define PERF_MEM_LVL_NA		0x01  /* not available */
    1320  #define PERF_MEM_LVL_HIT	0x02  /* hit level */
    1321  #define PERF_MEM_LVL_MISS	0x04  /* miss level  */
    1322  #define PERF_MEM_LVL_L1		0x08  /* L1 */
    1323  #define PERF_MEM_LVL_LFB	0x10  /* Line Fill Buffer */
    1324  #define PERF_MEM_LVL_L2		0x20  /* L2 */
    1325  #define PERF_MEM_LVL_L3		0x40  /* L3 */
    1326  #define PERF_MEM_LVL_LOC_RAM	0x80  /* Local DRAM */
    1327  #define PERF_MEM_LVL_REM_RAM1	0x100 /* Remote DRAM (1 hop) */
    1328  #define PERF_MEM_LVL_REM_RAM2	0x200 /* Remote DRAM (2 hops) */
    1329  #define PERF_MEM_LVL_REM_CCE1	0x400 /* Remote Cache (1 hop) */
    1330  #define PERF_MEM_LVL_REM_CCE2	0x800 /* Remote Cache (2 hops) */
    1331  #define PERF_MEM_LVL_IO		0x1000 /* I/O memory */
    1332  #define PERF_MEM_LVL_UNC	0x2000 /* Uncached memory */
    1333  #define PERF_MEM_LVL_SHIFT	5
    1334  
    1335  #define PERF_MEM_REMOTE_REMOTE	0x01  /* Remote */
    1336  #define PERF_MEM_REMOTE_SHIFT	37
    1337  
    1338  #define PERF_MEM_LVLNUM_L1	0x01 /* L1 */
    1339  #define PERF_MEM_LVLNUM_L2	0x02 /* L2 */
    1340  #define PERF_MEM_LVLNUM_L3	0x03 /* L3 */
    1341  #define PERF_MEM_LVLNUM_L4	0x04 /* L4 */
    1342  /* 5-0x8 available */
    1343  #define PERF_MEM_LVLNUM_CXL	0x09 /* CXL */
    1344  #define PERF_MEM_LVLNUM_IO	0x0a /* I/O */
    1345  #define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
    1346  #define PERF_MEM_LVLNUM_LFB	0x0c /* LFB */
    1347  #define PERF_MEM_LVLNUM_RAM	0x0d /* RAM */
    1348  #define PERF_MEM_LVLNUM_PMEM	0x0e /* PMEM */
    1349  #define PERF_MEM_LVLNUM_NA	0x0f /* N/A */
    1350  
    1351  #define PERF_MEM_LVLNUM_SHIFT	33
    1352  
    1353  /* snoop mode */
    1354  #define PERF_MEM_SNOOP_NA	0x01 /* not available */
    1355  #define PERF_MEM_SNOOP_NONE	0x02 /* no snoop */
    1356  #define PERF_MEM_SNOOP_HIT	0x04 /* snoop hit */
    1357  #define PERF_MEM_SNOOP_MISS	0x08 /* snoop miss */
    1358  #define PERF_MEM_SNOOP_HITM	0x10 /* snoop hit modified */
    1359  #define PERF_MEM_SNOOP_SHIFT	19
    1360  
    1361  #define PERF_MEM_SNOOPX_FWD	0x01 /* forward */
    1362  #define PERF_MEM_SNOOPX_PEER	0x02 /* xfer from peer */
    1363  #define PERF_MEM_SNOOPX_SHIFT  38
    1364  
    1365  /* locked instruction */
    1366  #define PERF_MEM_LOCK_NA	0x01 /* not available */
    1367  #define PERF_MEM_LOCK_LOCKED	0x02 /* locked transaction */
    1368  #define PERF_MEM_LOCK_SHIFT	24
    1369  
    1370  /* TLB access */
    1371  #define PERF_MEM_TLB_NA		0x01 /* not available */
    1372  #define PERF_MEM_TLB_HIT	0x02 /* hit level */
    1373  #define PERF_MEM_TLB_MISS	0x04 /* miss level */
    1374  #define PERF_MEM_TLB_L1		0x08 /* L1 */
    1375  #define PERF_MEM_TLB_L2		0x10 /* L2 */
    1376  #define PERF_MEM_TLB_WK		0x20 /* Hardware Walker*/
    1377  #define PERF_MEM_TLB_OS		0x40 /* OS fault handler */
    1378  #define PERF_MEM_TLB_SHIFT	26
    1379  
    1380  /* Access blocked */
    1381  #define PERF_MEM_BLK_NA		0x01 /* not available */
    1382  #define PERF_MEM_BLK_DATA	0x02 /* data could not be forwarded */
    1383  #define PERF_MEM_BLK_ADDR	0x04 /* address conflict */
    1384  #define PERF_MEM_BLK_SHIFT	40
    1385  
    1386  /* hop level */
    1387  #define PERF_MEM_HOPS_0		0x01 /* remote core, same node */
    1388  #define PERF_MEM_HOPS_1		0x02 /* remote node, same socket */
    1389  #define PERF_MEM_HOPS_2		0x03 /* remote socket, same board */
    1390  #define PERF_MEM_HOPS_3		0x04 /* remote board */
    1391  /* 5-7 available */
    1392  #define PERF_MEM_HOPS_SHIFT	43
    1393  
    1394  #define PERF_MEM_S(a, s) \
    1395  	(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
    1396  
    1397  /*
    1398   * single taken branch record layout:
    1399   *
    1400   *      from: source instruction (may not always be a branch insn)
    1401   *        to: branch target
    1402   *   mispred: branch target was mispredicted
    1403   * predicted: branch target was predicted
    1404   *
    1405   * support for mispred, predicted is optional. In case it
    1406   * is not supported mispred = predicted = 0.
    1407   *
    1408   *     in_tx: running in a hardware transaction
    1409   *     abort: aborting a hardware transaction
    1410   *    cycles: cycles from last branch (or 0 if not supported)
    1411   *      type: branch type
    1412   *      spec: branch speculation info (or 0 if not supported)
    1413   */
    1414  struct perf_branch_entry {
    1415  	__u64	from;
    1416  	__u64	to;
    1417  	__u64	mispred:1,  /* target mispredicted */
    1418  		predicted:1,/* target predicted */
    1419  		in_tx:1,    /* in transaction */
    1420  		abort:1,    /* transaction abort */
    1421  		cycles:16,  /* cycle count to last branch */
    1422  		type:4,     /* branch type */
    1423  		spec:2,     /* branch speculation info */
    1424  		new_type:4, /* additional branch type */
    1425  		priv:3,     /* privilege level */
    1426  		reserved:31;
    1427  };
    1428  
    1429  union perf_sample_weight {
    1430  	__u64		full;
    1431  #if defined(__LITTLE_ENDIAN_BITFIELD)
    1432  	struct {
    1433  		__u32	var1_dw;
    1434  		__u16	var2_w;
    1435  		__u16	var3_w;
    1436  	};
    1437  #elif defined(__BIG_ENDIAN_BITFIELD)
    1438  	struct {
    1439  		__u16	var3_w;
    1440  		__u16	var2_w;
    1441  		__u32	var1_dw;
    1442  	};
    1443  #else
    1444  #error "Unknown endianness"
    1445  #endif
    1446  };
    1447  
    1448  #endif /* _LINUX_PERF_EVENT_H */