(root)/
Python-3.12.0/
Python/
condvar.h
       1  /*
       2   * Portable condition variable support for windows and pthreads.
       3   * Everything is inline, this header can be included where needed.
       4   *
       5   * APIs generally return 0 on success and non-zero on error,
       6   * and the caller needs to use its platform's error mechanism to
       7   * discover the error (errno, or GetLastError())
       8   *
       9   * Note that some implementations cannot distinguish between a
      10   * condition variable wait time-out and successful wait. Most often
      11   * the difference is moot anyway since the wait condition must be
      12   * re-checked.
      13   * PyCOND_TIMEDWAIT, in addition to returning negative on error,
      14   * thus returns 0 on regular success, 1 on timeout
      15   * or 2 if it can't tell.
      16   *
      17   * There are at least two caveats with using these condition variables,
      18   * due to the fact that they may be emulated with Semaphores on
      19   * Windows:
      20   * 1) While PyCOND_SIGNAL() will wake up at least one thread, we
      21   *    cannot currently guarantee that it will be one of the threads
      22   *    already waiting in a PyCOND_WAIT() call.  It _could_ cause
      23   *    the wakeup of a subsequent thread to try a PyCOND_WAIT(),
      24   *    including the thread doing the PyCOND_SIGNAL() itself.
      25   *    The same applies to PyCOND_BROADCAST(), if N threads are waiting
      26   *    then at least N threads will be woken up, but not necessarily
      27   *    those already waiting.
      28   *    For this reason, don't make the scheduling assumption that a
      29   *    specific other thread will get the wakeup signal
      30   * 2) The _mutex_ must be held when calling PyCOND_SIGNAL() and
      31   *    PyCOND_BROADCAST().
      32   *    While e.g. the posix standard strongly recommends that the mutex
      33   *    associated with the condition variable is held when a
      34   *    pthread_cond_signal() call is made, this is not a hard requirement,
      35   *    although scheduling will not be "reliable" if it isn't.  Here
      36   *    the mutex is used for internal synchronization of the emulated
      37   *    Condition Variable.
      38   */
      39  
      40  #ifndef _CONDVAR_IMPL_H_
      41  #define _CONDVAR_IMPL_H_
      42  
      43  #include "Python.h"
      44  #include "pycore_condvar.h"
      45  
      46  #ifdef _POSIX_THREADS
      47  /*
      48   * POSIX support
      49   */
      50  
      51  /* These private functions are implemented in Python/thread_pthread.h */
      52  int _PyThread_cond_init(PyCOND_T *cond);
      53  void _PyThread_cond_after(long long us, struct timespec *abs);
      54  
      55  /* The following functions return 0 on success, nonzero on error */
      56  #define PyMUTEX_INIT(mut)       pthread_mutex_init((mut), NULL)
      57  #define PyMUTEX_FINI(mut)       pthread_mutex_destroy(mut)
      58  #define PyMUTEX_LOCK(mut)       pthread_mutex_lock(mut)
      59  #define PyMUTEX_UNLOCK(mut)     pthread_mutex_unlock(mut)
      60  
      61  #define PyCOND_INIT(cond)       _PyThread_cond_init(cond)
      62  #define PyCOND_FINI(cond)       pthread_cond_destroy(cond)
      63  #define PyCOND_SIGNAL(cond)     pthread_cond_signal(cond)
      64  #define PyCOND_BROADCAST(cond)  pthread_cond_broadcast(cond)
      65  #define PyCOND_WAIT(cond, mut)  pthread_cond_wait((cond), (mut))
      66  
      67  /* return 0 for success, 1 on timeout, -1 on error */
      68  Py_LOCAL_INLINE(int)
      69  PyCOND_TIMEDWAIT(PyCOND_T *cond, PyMUTEX_T *mut, long long us)
      70  {
      71      struct timespec abs_timeout;
      72      _PyThread_cond_after(us, &abs_timeout);
      73      int ret = pthread_cond_timedwait(cond, mut, &abs_timeout);
      74      if (ret == ETIMEDOUT) {
      75          return 1;
      76      }
      77      if (ret) {
      78          return -1;
      79      }
      80      return 0;
      81  }
      82  
      83  #elif defined(NT_THREADS)
      84  /*
      85   * Windows (XP, 2003 server and later, as well as (hopefully) CE) support
      86   *
      87   * Emulated condition variables ones that work with XP and later, plus
      88   * example native support on VISTA and onwards.
      89   */
      90  
      91  #if _PY_EMULATED_WIN_CV
      92  
      93  /* The mutex is a CriticalSection object and
      94     The condition variables is emulated with the help of a semaphore.
      95  
      96     This implementation still has the problem that the threads woken
      97     with a "signal" aren't necessarily those that are already
      98     waiting.  It corresponds to listing 2 in:
      99     http://birrell.org/andrew/papers/ImplementingCVs.pdf
     100  
     101     Generic emulations of the pthread_cond_* API using
     102     earlier Win32 functions can be found on the web.
     103     The following read can be give background information to these issues,
     104     but the implementations are all broken in some way.
     105     http://www.cse.wustl.edu/~schmidt/win32-cv-1.html
     106  */
     107  
     108  Py_LOCAL_INLINE(int)
     109  PyMUTEX_INIT(PyMUTEX_T *cs)
     110  {
     111      InitializeCriticalSection(cs);
     112      return 0;
     113  }
     114  
     115  Py_LOCAL_INLINE(int)
     116  PyMUTEX_FINI(PyMUTEX_T *cs)
     117  {
     118      DeleteCriticalSection(cs);
     119      return 0;
     120  }
     121  
     122  Py_LOCAL_INLINE(int)
     123  PyMUTEX_LOCK(PyMUTEX_T *cs)
     124  {
     125      EnterCriticalSection(cs);
     126      return 0;
     127  }
     128  
     129  Py_LOCAL_INLINE(int)
     130  PyMUTEX_UNLOCK(PyMUTEX_T *cs)
     131  {
     132      LeaveCriticalSection(cs);
     133      return 0;
     134  }
     135  
     136  
     137  Py_LOCAL_INLINE(int)
     138  PyCOND_INIT(PyCOND_T *cv)
     139  {
     140      /* A semaphore with a "large" max value,  The positive value
     141       * is only needed to catch those "lost wakeup" events and
     142       * race conditions when a timed wait elapses.
     143       */
     144      cv->sem = CreateSemaphore(NULL, 0, 100000, NULL);
     145      if (cv->sem==NULL)
     146          return -1;
     147      cv->waiting = 0;
     148      return 0;
     149  }
     150  
     151  Py_LOCAL_INLINE(int)
     152  PyCOND_FINI(PyCOND_T *cv)
     153  {
     154      return CloseHandle(cv->sem) ? 0 : -1;
     155  }
     156  
     157  /* this implementation can detect a timeout.  Returns 1 on timeout,
     158   * 0 otherwise (and -1 on error)
     159   */
     160  Py_LOCAL_INLINE(int)
     161  _PyCOND_WAIT_MS(PyCOND_T *cv, PyMUTEX_T *cs, DWORD ms)
     162  {
     163      DWORD wait;
     164      cv->waiting++;
     165      PyMUTEX_UNLOCK(cs);
     166      /* "lost wakeup bug" would occur if the caller were interrupted here,
     167       * but we are safe because we are using a semaphore which has an internal
     168       * count.
     169       */
     170      wait = WaitForSingleObjectEx(cv->sem, ms, FALSE);
     171      PyMUTEX_LOCK(cs);
     172      if (wait != WAIT_OBJECT_0)
     173          --cv->waiting;
     174          /* Here we have a benign race condition with PyCOND_SIGNAL.
     175           * When failure occurs or timeout, it is possible that
     176           * PyCOND_SIGNAL also decrements this value
     177           * and signals releases the mutex.  This is benign because it
     178           * just means an extra spurious wakeup for a waiting thread.
     179           * ('waiting' corresponds to the semaphore's "negative" count and
     180           * we may end up with e.g. (waiting == -1 && sem.count == 1).  When
     181           * a new thread comes along, it will pass right through, having
     182           * adjusted it to (waiting == 0 && sem.count == 0).
     183           */
     184  
     185      if (wait == WAIT_FAILED)
     186          return -1;
     187      /* return 0 on success, 1 on timeout */
     188      return wait != WAIT_OBJECT_0;
     189  }
     190  
     191  Py_LOCAL_INLINE(int)
     192  PyCOND_WAIT(PyCOND_T *cv, PyMUTEX_T *cs)
     193  {
     194      int result = _PyCOND_WAIT_MS(cv, cs, INFINITE);
     195      return result >= 0 ? 0 : result;
     196  }
     197  
     198  Py_LOCAL_INLINE(int)
     199  PyCOND_TIMEDWAIT(PyCOND_T *cv, PyMUTEX_T *cs, long long us)
     200  {
     201      return _PyCOND_WAIT_MS(cv, cs, (DWORD)(us/1000));
     202  }
     203  
     204  Py_LOCAL_INLINE(int)
     205  PyCOND_SIGNAL(PyCOND_T *cv)
     206  {
     207      /* this test allows PyCOND_SIGNAL to be a no-op unless required
     208       * to wake someone up, thus preventing an unbounded increase of
     209       * the semaphore's internal counter.
     210       */
     211      if (cv->waiting > 0) {
     212          /* notifying thread decreases the cv->waiting count so that
     213           * a delay between notify and actual wakeup of the target thread
     214           * doesn't cause a number of extra ReleaseSemaphore calls.
     215           */
     216          cv->waiting--;
     217          return ReleaseSemaphore(cv->sem, 1, NULL) ? 0 : -1;
     218      }
     219      return 0;
     220  }
     221  
     222  Py_LOCAL_INLINE(int)
     223  PyCOND_BROADCAST(PyCOND_T *cv)
     224  {
     225      int waiting = cv->waiting;
     226      if (waiting > 0) {
     227          cv->waiting = 0;
     228          return ReleaseSemaphore(cv->sem, waiting, NULL) ? 0 : -1;
     229      }
     230      return 0;
     231  }
     232  
     233  #else /* !_PY_EMULATED_WIN_CV */
     234  
     235  Py_LOCAL_INLINE(int)
     236  PyMUTEX_INIT(PyMUTEX_T *cs)
     237  {
     238      InitializeSRWLock(cs);
     239      return 0;
     240  }
     241  
     242  Py_LOCAL_INLINE(int)
     243  PyMUTEX_FINI(PyMUTEX_T *cs)
     244  {
     245      return 0;
     246  }
     247  
     248  Py_LOCAL_INLINE(int)
     249  PyMUTEX_LOCK(PyMUTEX_T *cs)
     250  {
     251      AcquireSRWLockExclusive(cs);
     252      return 0;
     253  }
     254  
     255  Py_LOCAL_INLINE(int)
     256  PyMUTEX_UNLOCK(PyMUTEX_T *cs)
     257  {
     258      ReleaseSRWLockExclusive(cs);
     259      return 0;
     260  }
     261  
     262  
     263  Py_LOCAL_INLINE(int)
     264  PyCOND_INIT(PyCOND_T *cv)
     265  {
     266      InitializeConditionVariable(cv);
     267      return 0;
     268  }
     269  Py_LOCAL_INLINE(int)
     270  PyCOND_FINI(PyCOND_T *cv)
     271  {
     272      return 0;
     273  }
     274  
     275  Py_LOCAL_INLINE(int)
     276  PyCOND_WAIT(PyCOND_T *cv, PyMUTEX_T *cs)
     277  {
     278      return SleepConditionVariableSRW(cv, cs, INFINITE, 0) ? 0 : -1;
     279  }
     280  
     281  /* This implementation makes no distinction about timeouts.  Signal
     282   * 2 to indicate that we don't know.
     283   */
     284  Py_LOCAL_INLINE(int)
     285  PyCOND_TIMEDWAIT(PyCOND_T *cv, PyMUTEX_T *cs, long long us)
     286  {
     287      return SleepConditionVariableSRW(cv, cs, (DWORD)(us/1000), 0) ? 2 : -1;
     288  }
     289  
     290  Py_LOCAL_INLINE(int)
     291  PyCOND_SIGNAL(PyCOND_T *cv)
     292  {
     293       WakeConditionVariable(cv);
     294       return 0;
     295  }
     296  
     297  Py_LOCAL_INLINE(int)
     298  PyCOND_BROADCAST(PyCOND_T *cv)
     299  {
     300       WakeAllConditionVariable(cv);
     301       return 0;
     302  }
     303  
     304  
     305  #endif /* _PY_EMULATED_WIN_CV */
     306  
     307  #endif /* _POSIX_THREADS, NT_THREADS */
     308  
     309  #endif /* _CONDVAR_IMPL_H_ */