(root)/
Python-3.12.0/
Modules/
_hacl/
Hacl_Hash_SHA1.c
       1  /* MIT License
       2   *
       3   * Copyright (c) 2016-2022 INRIA, CMU and Microsoft Corporation
       4   * Copyright (c) 2022-2023 HACL* Contributors
       5   *
       6   * Permission is hereby granted, free of charge, to any person obtaining a copy
       7   * of this software and associated documentation files (the "Software"), to deal
       8   * in the Software without restriction, including without limitation the rights
       9   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
      10   * copies of the Software, and to permit persons to whom the Software is
      11   * furnished to do so, subject to the following conditions:
      12   *
      13   * The above copyright notice and this permission notice shall be included in all
      14   * copies or substantial portions of the Software.
      15   *
      16   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
      17   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
      18   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
      19   * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
      20   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
      21   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
      22   * SOFTWARE.
      23   */
      24  
      25  
      26  #include "internal/Hacl_Hash_SHA1.h"
      27  
      28  static uint32_t
      29  _h0[5U] =
      30    {
      31      (uint32_t)0x67452301U, (uint32_t)0xefcdab89U, (uint32_t)0x98badcfeU, (uint32_t)0x10325476U,
      32      (uint32_t)0xc3d2e1f0U
      33    };
      34  
      35  void Hacl_Hash_Core_SHA1_legacy_init(uint32_t *s)
      36  {
      37    KRML_MAYBE_FOR5(i, (uint32_t)0U, (uint32_t)5U, (uint32_t)1U, s[i] = _h0[i];);
      38  }
      39  
      40  static void legacy_update(uint32_t *h, uint8_t *l)
      41  {
      42    uint32_t ha = h[0U];
      43    uint32_t hb = h[1U];
      44    uint32_t hc = h[2U];
      45    uint32_t hd = h[3U];
      46    uint32_t he = h[4U];
      47    uint32_t _w[80U] = { 0U };
      48    for (uint32_t i = (uint32_t)0U; i < (uint32_t)80U; i++)
      49    {
      50      uint32_t v;
      51      if (i < (uint32_t)16U)
      52      {
      53        uint8_t *b = l + i * (uint32_t)4U;
      54        uint32_t u = load32_be(b);
      55        v = u;
      56      }
      57      else
      58      {
      59        uint32_t wmit3 = _w[i - (uint32_t)3U];
      60        uint32_t wmit8 = _w[i - (uint32_t)8U];
      61        uint32_t wmit14 = _w[i - (uint32_t)14U];
      62        uint32_t wmit16 = _w[i - (uint32_t)16U];
      63        v =
      64          (wmit3 ^ (wmit8 ^ (wmit14 ^ wmit16)))
      65          << (uint32_t)1U
      66          | (wmit3 ^ (wmit8 ^ (wmit14 ^ wmit16))) >> (uint32_t)31U;
      67      }
      68      _w[i] = v;
      69    }
      70    for (uint32_t i = (uint32_t)0U; i < (uint32_t)80U; i++)
      71    {
      72      uint32_t _a = h[0U];
      73      uint32_t _b = h[1U];
      74      uint32_t _c = h[2U];
      75      uint32_t _d = h[3U];
      76      uint32_t _e = h[4U];
      77      uint32_t wmit = _w[i];
      78      uint32_t ite0;
      79      if (i < (uint32_t)20U)
      80      {
      81        ite0 = (_b & _c) ^ (~_b & _d);
      82      }
      83      else if ((uint32_t)39U < i && i < (uint32_t)60U)
      84      {
      85        ite0 = (_b & _c) ^ ((_b & _d) ^ (_c & _d));
      86      }
      87      else
      88      {
      89        ite0 = _b ^ (_c ^ _d);
      90      }
      91      uint32_t ite;
      92      if (i < (uint32_t)20U)
      93      {
      94        ite = (uint32_t)0x5a827999U;
      95      }
      96      else if (i < (uint32_t)40U)
      97      {
      98        ite = (uint32_t)0x6ed9eba1U;
      99      }
     100      else if (i < (uint32_t)60U)
     101      {
     102        ite = (uint32_t)0x8f1bbcdcU;
     103      }
     104      else
     105      {
     106        ite = (uint32_t)0xca62c1d6U;
     107      }
     108      uint32_t _T = (_a << (uint32_t)5U | _a >> (uint32_t)27U) + ite0 + _e + ite + wmit;
     109      h[0U] = _T;
     110      h[1U] = _a;
     111      h[2U] = _b << (uint32_t)30U | _b >> (uint32_t)2U;
     112      h[3U] = _c;
     113      h[4U] = _d;
     114    }
     115    for (uint32_t i = (uint32_t)0U; i < (uint32_t)80U; i++)
     116    {
     117      _w[i] = (uint32_t)0U;
     118    }
     119    uint32_t sta = h[0U];
     120    uint32_t stb = h[1U];
     121    uint32_t stc = h[2U];
     122    uint32_t std = h[3U];
     123    uint32_t ste = h[4U];
     124    h[0U] = sta + ha;
     125    h[1U] = stb + hb;
     126    h[2U] = stc + hc;
     127    h[3U] = std + hd;
     128    h[4U] = ste + he;
     129  }
     130  
     131  static void legacy_pad(uint64_t len, uint8_t *dst)
     132  {
     133    uint8_t *dst1 = dst;
     134    dst1[0U] = (uint8_t)0x80U;
     135    uint8_t *dst2 = dst + (uint32_t)1U;
     136    for
     137    (uint32_t
     138      i = (uint32_t)0U;
     139      i
     140      < ((uint32_t)128U - ((uint32_t)9U + (uint32_t)(len % (uint64_t)(uint32_t)64U))) % (uint32_t)64U;
     141      i++)
     142    {
     143      dst2[i] = (uint8_t)0U;
     144    }
     145    uint8_t
     146    *dst3 =
     147      dst
     148      +
     149        (uint32_t)1U
     150        +
     151          ((uint32_t)128U - ((uint32_t)9U + (uint32_t)(len % (uint64_t)(uint32_t)64U)))
     152          % (uint32_t)64U;
     153    store64_be(dst3, len << (uint32_t)3U);
     154  }
     155  
     156  void Hacl_Hash_Core_SHA1_legacy_finish(uint32_t *s, uint8_t *dst)
     157  {
     158    KRML_MAYBE_FOR5(i,
     159      (uint32_t)0U,
     160      (uint32_t)5U,
     161      (uint32_t)1U,
     162      store32_be(dst + i * (uint32_t)4U, s[i]););
     163  }
     164  
     165  void Hacl_Hash_SHA1_legacy_update_multi(uint32_t *s, uint8_t *blocks, uint32_t n_blocks)
     166  {
     167    for (uint32_t i = (uint32_t)0U; i < n_blocks; i++)
     168    {
     169      uint32_t sz = (uint32_t)64U;
     170      uint8_t *block = blocks + sz * i;
     171      legacy_update(s, block);
     172    }
     173  }
     174  
     175  void
     176  Hacl_Hash_SHA1_legacy_update_last(
     177    uint32_t *s,
     178    uint64_t prev_len,
     179    uint8_t *input,
     180    uint32_t input_len
     181  )
     182  {
     183    uint32_t blocks_n = input_len / (uint32_t)64U;
     184    uint32_t blocks_len = blocks_n * (uint32_t)64U;
     185    uint8_t *blocks = input;
     186    uint32_t rest_len = input_len - blocks_len;
     187    uint8_t *rest = input + blocks_len;
     188    Hacl_Hash_SHA1_legacy_update_multi(s, blocks, blocks_n);
     189    uint64_t total_input_len = prev_len + (uint64_t)input_len;
     190    uint32_t
     191    pad_len =
     192      (uint32_t)1U
     193      +
     194        ((uint32_t)128U - ((uint32_t)9U + (uint32_t)(total_input_len % (uint64_t)(uint32_t)64U)))
     195        % (uint32_t)64U
     196      + (uint32_t)8U;
     197    uint32_t tmp_len = rest_len + pad_len;
     198    uint8_t tmp_twoblocks[128U] = { 0U };
     199    uint8_t *tmp = tmp_twoblocks;
     200    uint8_t *tmp_rest = tmp;
     201    uint8_t *tmp_pad = tmp + rest_len;
     202    memcpy(tmp_rest, rest, rest_len * sizeof (uint8_t));
     203    legacy_pad(total_input_len, tmp_pad);
     204    Hacl_Hash_SHA1_legacy_update_multi(s, tmp, tmp_len / (uint32_t)64U);
     205  }
     206  
     207  void Hacl_Hash_SHA1_legacy_hash(uint8_t *input, uint32_t input_len, uint8_t *dst)
     208  {
     209    uint32_t
     210    s[5U] =
     211      {
     212        (uint32_t)0x67452301U, (uint32_t)0xefcdab89U, (uint32_t)0x98badcfeU, (uint32_t)0x10325476U,
     213        (uint32_t)0xc3d2e1f0U
     214      };
     215    uint32_t blocks_n0 = input_len / (uint32_t)64U;
     216    uint32_t blocks_n1;
     217    if (input_len % (uint32_t)64U == (uint32_t)0U && blocks_n0 > (uint32_t)0U)
     218    {
     219      blocks_n1 = blocks_n0 - (uint32_t)1U;
     220    }
     221    else
     222    {
     223      blocks_n1 = blocks_n0;
     224    }
     225    uint32_t blocks_len0 = blocks_n1 * (uint32_t)64U;
     226    uint8_t *blocks0 = input;
     227    uint32_t rest_len0 = input_len - blocks_len0;
     228    uint8_t *rest0 = input + blocks_len0;
     229    uint32_t blocks_n = blocks_n1;
     230    uint32_t blocks_len = blocks_len0;
     231    uint8_t *blocks = blocks0;
     232    uint32_t rest_len = rest_len0;
     233    uint8_t *rest = rest0;
     234    Hacl_Hash_SHA1_legacy_update_multi(s, blocks, blocks_n);
     235    Hacl_Hash_SHA1_legacy_update_last(s, (uint64_t)blocks_len, rest, rest_len);
     236    Hacl_Hash_Core_SHA1_legacy_finish(s, dst);
     237  }
     238  
     239  Hacl_Streaming_MD_state_32 *Hacl_Streaming_SHA1_legacy_create_in(void)
     240  {
     241    uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)64U, sizeof (uint8_t));
     242    uint32_t *block_state = (uint32_t *)KRML_HOST_CALLOC((uint32_t)5U, sizeof (uint32_t));
     243    Hacl_Streaming_MD_state_32
     244    s = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U };
     245    Hacl_Streaming_MD_state_32
     246    *p = (Hacl_Streaming_MD_state_32 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_32));
     247    p[0U] = s;
     248    Hacl_Hash_Core_SHA1_legacy_init(block_state);
     249    return p;
     250  }
     251  
     252  void Hacl_Streaming_SHA1_legacy_init(Hacl_Streaming_MD_state_32 *s)
     253  {
     254    Hacl_Streaming_MD_state_32 scrut = *s;
     255    uint8_t *buf = scrut.buf;
     256    uint32_t *block_state = scrut.block_state;
     257    Hacl_Hash_Core_SHA1_legacy_init(block_state);
     258    Hacl_Streaming_MD_state_32
     259    tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U };
     260    s[0U] = tmp;
     261  }
     262  
     263  /**
     264  0 = success, 1 = max length exceeded
     265  */
     266  Hacl_Streaming_Types_error_code
     267  Hacl_Streaming_SHA1_legacy_update(Hacl_Streaming_MD_state_32 *p, uint8_t *data, uint32_t len)
     268  {
     269    Hacl_Streaming_MD_state_32 s = *p;
     270    uint64_t total_len = s.total_len;
     271    if ((uint64_t)len > (uint64_t)2305843009213693951U - total_len)
     272    {
     273      return Hacl_Streaming_Types_MaximumLengthExceeded;
     274    }
     275    uint32_t sz;
     276    if (total_len % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len > (uint64_t)0U)
     277    {
     278      sz = (uint32_t)64U;
     279    }
     280    else
     281    {
     282      sz = (uint32_t)(total_len % (uint64_t)(uint32_t)64U);
     283    }
     284    if (len <= (uint32_t)64U - sz)
     285    {
     286      Hacl_Streaming_MD_state_32 s1 = *p;
     287      uint32_t *block_state1 = s1.block_state;
     288      uint8_t *buf = s1.buf;
     289      uint64_t total_len1 = s1.total_len;
     290      uint32_t sz1;
     291      if (total_len1 % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len1 > (uint64_t)0U)
     292      {
     293        sz1 = (uint32_t)64U;
     294      }
     295      else
     296      {
     297        sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)64U);
     298      }
     299      uint8_t *buf2 = buf + sz1;
     300      memcpy(buf2, data, len * sizeof (uint8_t));
     301      uint64_t total_len2 = total_len1 + (uint64_t)len;
     302      *p
     303      =
     304        (
     305          (Hacl_Streaming_MD_state_32){
     306            .block_state = block_state1,
     307            .buf = buf,
     308            .total_len = total_len2
     309          }
     310        );
     311    }
     312    else if (sz == (uint32_t)0U)
     313    {
     314      Hacl_Streaming_MD_state_32 s1 = *p;
     315      uint32_t *block_state1 = s1.block_state;
     316      uint8_t *buf = s1.buf;
     317      uint64_t total_len1 = s1.total_len;
     318      uint32_t sz1;
     319      if (total_len1 % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len1 > (uint64_t)0U)
     320      {
     321        sz1 = (uint32_t)64U;
     322      }
     323      else
     324      {
     325        sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)64U);
     326      }
     327      if (!(sz1 == (uint32_t)0U))
     328      {
     329        Hacl_Hash_SHA1_legacy_update_multi(block_state1, buf, (uint32_t)1U);
     330      }
     331      uint32_t ite;
     332      if ((uint64_t)len % (uint64_t)(uint32_t)64U == (uint64_t)0U && (uint64_t)len > (uint64_t)0U)
     333      {
     334        ite = (uint32_t)64U;
     335      }
     336      else
     337      {
     338        ite = (uint32_t)((uint64_t)len % (uint64_t)(uint32_t)64U);
     339      }
     340      uint32_t n_blocks = (len - ite) / (uint32_t)64U;
     341      uint32_t data1_len = n_blocks * (uint32_t)64U;
     342      uint32_t data2_len = len - data1_len;
     343      uint8_t *data1 = data;
     344      uint8_t *data2 = data + data1_len;
     345      Hacl_Hash_SHA1_legacy_update_multi(block_state1, data1, data1_len / (uint32_t)64U);
     346      uint8_t *dst = buf;
     347      memcpy(dst, data2, data2_len * sizeof (uint8_t));
     348      *p
     349      =
     350        (
     351          (Hacl_Streaming_MD_state_32){
     352            .block_state = block_state1,
     353            .buf = buf,
     354            .total_len = total_len1 + (uint64_t)len
     355          }
     356        );
     357    }
     358    else
     359    {
     360      uint32_t diff = (uint32_t)64U - sz;
     361      uint8_t *data1 = data;
     362      uint8_t *data2 = data + diff;
     363      Hacl_Streaming_MD_state_32 s1 = *p;
     364      uint32_t *block_state10 = s1.block_state;
     365      uint8_t *buf0 = s1.buf;
     366      uint64_t total_len10 = s1.total_len;
     367      uint32_t sz10;
     368      if (total_len10 % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len10 > (uint64_t)0U)
     369      {
     370        sz10 = (uint32_t)64U;
     371      }
     372      else
     373      {
     374        sz10 = (uint32_t)(total_len10 % (uint64_t)(uint32_t)64U);
     375      }
     376      uint8_t *buf2 = buf0 + sz10;
     377      memcpy(buf2, data1, diff * sizeof (uint8_t));
     378      uint64_t total_len2 = total_len10 + (uint64_t)diff;
     379      *p
     380      =
     381        (
     382          (Hacl_Streaming_MD_state_32){
     383            .block_state = block_state10,
     384            .buf = buf0,
     385            .total_len = total_len2
     386          }
     387        );
     388      Hacl_Streaming_MD_state_32 s10 = *p;
     389      uint32_t *block_state1 = s10.block_state;
     390      uint8_t *buf = s10.buf;
     391      uint64_t total_len1 = s10.total_len;
     392      uint32_t sz1;
     393      if (total_len1 % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len1 > (uint64_t)0U)
     394      {
     395        sz1 = (uint32_t)64U;
     396      }
     397      else
     398      {
     399        sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)64U);
     400      }
     401      if (!(sz1 == (uint32_t)0U))
     402      {
     403        Hacl_Hash_SHA1_legacy_update_multi(block_state1, buf, (uint32_t)1U);
     404      }
     405      uint32_t ite;
     406      if
     407      (
     408        (uint64_t)(len - diff)
     409        % (uint64_t)(uint32_t)64U
     410        == (uint64_t)0U
     411        && (uint64_t)(len - diff) > (uint64_t)0U
     412      )
     413      {
     414        ite = (uint32_t)64U;
     415      }
     416      else
     417      {
     418        ite = (uint32_t)((uint64_t)(len - diff) % (uint64_t)(uint32_t)64U);
     419      }
     420      uint32_t n_blocks = (len - diff - ite) / (uint32_t)64U;
     421      uint32_t data1_len = n_blocks * (uint32_t)64U;
     422      uint32_t data2_len = len - diff - data1_len;
     423      uint8_t *data11 = data2;
     424      uint8_t *data21 = data2 + data1_len;
     425      Hacl_Hash_SHA1_legacy_update_multi(block_state1, data11, data1_len / (uint32_t)64U);
     426      uint8_t *dst = buf;
     427      memcpy(dst, data21, data2_len * sizeof (uint8_t));
     428      *p
     429      =
     430        (
     431          (Hacl_Streaming_MD_state_32){
     432            .block_state = block_state1,
     433            .buf = buf,
     434            .total_len = total_len1 + (uint64_t)(len - diff)
     435          }
     436        );
     437    }
     438    return Hacl_Streaming_Types_Success;
     439  }
     440  
     441  void Hacl_Streaming_SHA1_legacy_finish(Hacl_Streaming_MD_state_32 *p, uint8_t *dst)
     442  {
     443    Hacl_Streaming_MD_state_32 scrut = *p;
     444    uint32_t *block_state = scrut.block_state;
     445    uint8_t *buf_ = scrut.buf;
     446    uint64_t total_len = scrut.total_len;
     447    uint32_t r;
     448    if (total_len % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len > (uint64_t)0U)
     449    {
     450      r = (uint32_t)64U;
     451    }
     452    else
     453    {
     454      r = (uint32_t)(total_len % (uint64_t)(uint32_t)64U);
     455    }
     456    uint8_t *buf_1 = buf_;
     457    uint32_t tmp_block_state[5U] = { 0U };
     458    memcpy(tmp_block_state, block_state, (uint32_t)5U * sizeof (uint32_t));
     459    uint32_t ite;
     460    if (r % (uint32_t)64U == (uint32_t)0U && r > (uint32_t)0U)
     461    {
     462      ite = (uint32_t)64U;
     463    }
     464    else
     465    {
     466      ite = r % (uint32_t)64U;
     467    }
     468    uint8_t *buf_last = buf_1 + r - ite;
     469    uint8_t *buf_multi = buf_1;
     470    Hacl_Hash_SHA1_legacy_update_multi(tmp_block_state, buf_multi, (uint32_t)0U);
     471    uint64_t prev_len_last = total_len - (uint64_t)r;
     472    Hacl_Hash_SHA1_legacy_update_last(tmp_block_state, prev_len_last, buf_last, r);
     473    Hacl_Hash_Core_SHA1_legacy_finish(tmp_block_state, dst);
     474  }
     475  
     476  void Hacl_Streaming_SHA1_legacy_free(Hacl_Streaming_MD_state_32 *s)
     477  {
     478    Hacl_Streaming_MD_state_32 scrut = *s;
     479    uint8_t *buf = scrut.buf;
     480    uint32_t *block_state = scrut.block_state;
     481    KRML_HOST_FREE(block_state);
     482    KRML_HOST_FREE(buf);
     483    KRML_HOST_FREE(s);
     484  }
     485  
     486  Hacl_Streaming_MD_state_32 *Hacl_Streaming_SHA1_legacy_copy(Hacl_Streaming_MD_state_32 *s0)
     487  {
     488    Hacl_Streaming_MD_state_32 scrut = *s0;
     489    uint32_t *block_state0 = scrut.block_state;
     490    uint8_t *buf0 = scrut.buf;
     491    uint64_t total_len0 = scrut.total_len;
     492    uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)64U, sizeof (uint8_t));
     493    memcpy(buf, buf0, (uint32_t)64U * sizeof (uint8_t));
     494    uint32_t *block_state = (uint32_t *)KRML_HOST_CALLOC((uint32_t)5U, sizeof (uint32_t));
     495    memcpy(block_state, block_state0, (uint32_t)5U * sizeof (uint32_t));
     496    Hacl_Streaming_MD_state_32
     497    s = { .block_state = block_state, .buf = buf, .total_len = total_len0 };
     498    Hacl_Streaming_MD_state_32
     499    *p = (Hacl_Streaming_MD_state_32 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_32));
     500    p[0U] = s;
     501    return p;
     502  }
     503  
     504  void Hacl_Streaming_SHA1_legacy_hash(uint8_t *input, uint32_t input_len, uint8_t *dst)
     505  {
     506    Hacl_Hash_SHA1_legacy_hash(input, input_len, dst);
     507  }
     508