(root)/
Python-3.12.0/
Modules/
_decimal/
libmpdec/
sixstep.c
       1  /*
       2   * Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
       3   *
       4   * Redistribution and use in source and binary forms, with or without
       5   * modification, are permitted provided that the following conditions
       6   * are met:
       7   *
       8   * 1. Redistributions of source code must retain the above copyright
       9   *    notice, this list of conditions and the following disclaimer.
      10   *
      11   * 2. Redistributions in binary form must reproduce the above copyright
      12   *    notice, this list of conditions and the following disclaimer in the
      13   *    documentation and/or other materials provided with the distribution.
      14   *
      15   * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
      16   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
      17   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
      18   * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
      19   * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
      20   * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
      21   * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
      22   * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
      23   * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
      24   * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
      25   * SUCH DAMAGE.
      26   */
      27  
      28  
      29  #include "mpdecimal.h"
      30  
      31  #include <assert.h>
      32  #include <stdio.h>
      33  
      34  #include "bits.h"
      35  #include "constants.h"
      36  #include "difradix2.h"
      37  #include "numbertheory.h"
      38  #include "sixstep.h"
      39  #include "transpose.h"
      40  #include "umodarith.h"
      41  
      42  
      43  /* Bignum: Cache efficient Matrix Fourier Transform for arrays of the
      44     form 2**n (See literature/six-step.txt). */
      45  
      46  
      47  /* forward transform with sign = -1 */
      48  int
      49  six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
      50  {
      51      struct fnt_params *tparams;
      52      mpd_size_t log2n, C, R;
      53      mpd_uint_t kernel;
      54      mpd_uint_t umod;
      55  #ifdef PPRO
      56      double dmod;
      57      uint32_t dinvmod[3];
      58  #endif
      59      mpd_uint_t *x, w0, w1, wstep;
      60      mpd_size_t i, k;
      61  
      62  
      63      assert(ispower2(n));
      64      assert(n >= 16);
      65      assert(n <= MPD_MAXTRANSFORM_2N);
      66  
      67      log2n = mpd_bsr(n);
      68      C = ((mpd_size_t)1) << (log2n / 2);  /* number of columns */
      69      R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */
      70  
      71  
      72      /* Transpose the matrix. */
      73      if (!transpose_pow2(a, R, C)) {
      74          return 0;
      75      }
      76  
      77      /* Length R transform on the rows. */
      78      if ((tparams = _mpd_init_fnt_params(R, -1, modnum)) == NULL) {
      79          return 0;
      80      }
      81      for (x = a; x < a+n; x += R) {
      82          fnt_dif2(x, R, tparams);
      83      }
      84  
      85      /* Transpose the matrix. */
      86      if (!transpose_pow2(a, C, R)) {
      87          mpd_free(tparams);
      88          return 0;
      89      }
      90  
      91      /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
      92      SETMODULUS(modnum);
      93      kernel = _mpd_getkernel(n, -1, modnum);
      94      for (i = 1; i < R; i++) {
      95          w0 = 1;                  /* r**(i*0): initial value for k=0 */
      96          w1 = POWMOD(kernel, i);  /* r**(i*1): initial value for k=1 */
      97          wstep = MULMOD(w1, w1);  /* r**(2*i) */
      98          for (k = 0; k < C; k += 2) {
      99              mpd_uint_t x0 = a[i*C+k];
     100              mpd_uint_t x1 = a[i*C+k+1];
     101              MULMOD2(&x0, w0, &x1, w1);
     102              MULMOD2C(&w0, &w1, wstep);  /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */
     103              a[i*C+k] = x0;
     104              a[i*C+k+1] = x1;
     105          }
     106      }
     107  
     108      /* Length C transform on the rows. */
     109      if (C != R) {
     110          mpd_free(tparams);
     111          if ((tparams = _mpd_init_fnt_params(C, -1, modnum)) == NULL) {
     112              return 0;
     113          }
     114      }
     115      for (x = a; x < a+n; x += C) {
     116          fnt_dif2(x, C, tparams);
     117      }
     118      mpd_free(tparams);
     119  
     120  #if 0
     121      /* An unordered transform is sufficient for convolution. */
     122      /* Transpose the matrix. */
     123      if (!transpose_pow2(a, R, C)) {
     124          return 0;
     125      }
     126  #endif
     127  
     128      return 1;
     129  }
     130  
     131  
     132  /* reverse transform, sign = 1 */
     133  int
     134  inv_six_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
     135  {
     136      struct fnt_params *tparams;
     137      mpd_size_t log2n, C, R;
     138      mpd_uint_t kernel;
     139      mpd_uint_t umod;
     140  #ifdef PPRO
     141      double dmod;
     142      uint32_t dinvmod[3];
     143  #endif
     144      mpd_uint_t *x, w0, w1, wstep;
     145      mpd_size_t i, k;
     146  
     147  
     148      assert(ispower2(n));
     149      assert(n >= 16);
     150      assert(n <= MPD_MAXTRANSFORM_2N);
     151  
     152      log2n = mpd_bsr(n);
     153      C = ((mpd_size_t)1) << (log2n / 2); /* number of columns */
     154      R = ((mpd_size_t)1) << (log2n - (log2n / 2)); /* number of rows */
     155  
     156  
     157  #if 0
     158      /* An unordered transform is sufficient for convolution. */
     159      /* Transpose the matrix, producing an R*C matrix. */
     160      if (!transpose_pow2(a, C, R)) {
     161          return 0;
     162      }
     163  #endif
     164  
     165      /* Length C transform on the rows. */
     166      if ((tparams = _mpd_init_fnt_params(C, 1, modnum)) == NULL) {
     167          return 0;
     168      }
     169      for (x = a; x < a+n; x += C) {
     170          fnt_dif2(x, C, tparams);
     171      }
     172  
     173      /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
     174      SETMODULUS(modnum);
     175      kernel = _mpd_getkernel(n, 1, modnum);
     176      for (i = 1; i < R; i++) {
     177          w0 = 1;
     178          w1 = POWMOD(kernel, i);
     179          wstep = MULMOD(w1, w1);
     180          for (k = 0; k < C; k += 2) {
     181              mpd_uint_t x0 = a[i*C+k];
     182              mpd_uint_t x1 = a[i*C+k+1];
     183              MULMOD2(&x0, w0, &x1, w1);
     184              MULMOD2C(&w0, &w1, wstep);
     185              a[i*C+k] = x0;
     186              a[i*C+k+1] = x1;
     187          }
     188      }
     189  
     190      /* Transpose the matrix. */
     191      if (!transpose_pow2(a, R, C)) {
     192          mpd_free(tparams);
     193          return 0;
     194      }
     195  
     196      /* Length R transform on the rows. */
     197      if (R != C) {
     198          mpd_free(tparams);
     199          if ((tparams = _mpd_init_fnt_params(R, 1, modnum)) == NULL) {
     200              return 0;
     201          }
     202      }
     203      for (x = a; x < a+n; x += R) {
     204          fnt_dif2(x, R, tparams);
     205      }
     206      mpd_free(tparams);
     207  
     208      /* Transpose the matrix. */
     209      if (!transpose_pow2(a, C, R)) {
     210          return 0;
     211      }
     212  
     213      return 1;
     214  }