(root)/
Python-3.12.0/
Modules/
_decimal/
libmpdec/
crt.c
       1  /*
       2   * Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
       3   *
       4   * Redistribution and use in source and binary forms, with or without
       5   * modification, are permitted provided that the following conditions
       6   * are met:
       7   *
       8   * 1. Redistributions of source code must retain the above copyright
       9   *    notice, this list of conditions and the following disclaimer.
      10   *
      11   * 2. Redistributions in binary form must reproduce the above copyright
      12   *    notice, this list of conditions and the following disclaimer in the
      13   *    documentation and/or other materials provided with the distribution.
      14   *
      15   * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
      16   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
      17   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
      18   * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
      19   * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
      20   * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
      21   * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
      22   * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
      23   * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
      24   * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
      25   * SUCH DAMAGE.
      26   */
      27  
      28  
      29  #include "mpdecimal.h"
      30  
      31  #include <assert.h>
      32  
      33  #include "constants.h"
      34  #include "crt.h"
      35  #include "numbertheory.h"
      36  #include "typearith.h"
      37  #include "umodarith.h"
      38  
      39  
      40  /* Bignum: Chinese Remainder Theorem, extends the maximum transform length. */
      41  
      42  
      43  /* Multiply P1P2 by v, store result in w. */
      44  static inline void
      45  _crt_mulP1P2_3(mpd_uint_t w[3], mpd_uint_t v)
      46  {
      47      mpd_uint_t hi1, hi2, lo;
      48  
      49      _mpd_mul_words(&hi1, &lo, LH_P1P2, v);
      50      w[0] = lo;
      51  
      52      _mpd_mul_words(&hi2, &lo, UH_P1P2, v);
      53      lo = hi1 + lo;
      54      if (lo < hi1) hi2++;
      55  
      56      w[1] = lo;
      57      w[2] = hi2;
      58  }
      59  
      60  /* Add 3 words from v to w. The result is known to fit in w. */
      61  static inline void
      62  _crt_add3(mpd_uint_t w[3], mpd_uint_t v[3])
      63  {
      64      mpd_uint_t carry;
      65  
      66      w[0] = w[0] + v[0];
      67      carry = (w[0] < v[0]);
      68  
      69      w[1] = w[1] + v[1];
      70      if (w[1] < v[1]) w[2]++;
      71  
      72      w[1] = w[1] + carry;
      73      if (w[1] < carry) w[2]++;
      74  
      75      w[2] += v[2];
      76  }
      77  
      78  /* Divide 3 words in u by v, store result in w, return remainder. */
      79  static inline mpd_uint_t
      80  _crt_div3(mpd_uint_t *w, const mpd_uint_t *u, mpd_uint_t v)
      81  {
      82      mpd_uint_t r1 = u[2];
      83      mpd_uint_t r2;
      84  
      85      if (r1 < v) {
      86          w[2] = 0;
      87      }
      88      else {
      89          _mpd_div_word(&w[2], &r1, u[2], v); /* GCOV_NOT_REACHED */
      90      }
      91  
      92      _mpd_div_words(&w[1], &r2, r1, u[1], v);
      93      _mpd_div_words(&w[0], &r1, r2, u[0], v);
      94  
      95      return r1;
      96  }
      97  
      98  
      99  /*
     100   * Chinese Remainder Theorem:
     101   * Algorithm from Joerg Arndt, "Matters Computational",
     102   * Chapter 37.4.1 [http://www.jjj.de/fxt/]
     103   *
     104   * See also Knuth, TAOCP, Volume 2, 4.3.2, exercise 7.
     105   */
     106  
     107  /*
     108   * CRT with carry: x1, x2, x3 contain numbers modulo p1, p2, p3. For each
     109   * triple of members of the arrays, find the unique z modulo p1*p2*p3, with
     110   * zmax = p1*p2*p3 - 1.
     111   *
     112   * In each iteration of the loop, split z into result[i] = z % MPD_RADIX
     113   * and carry = z / MPD_RADIX. Let N be the size of carry[] and cmax the
     114   * maximum carry.
     115   *
     116   * Limits for the 32-bit build:
     117   *
     118   *   N    = 2**96
     119   *   cmax = 7711435591312380274
     120   *
     121   * Limits for the 64 bit build:
     122   *
     123   *   N    = 2**192
     124   *   cmax = 627710135393475385904124401220046371710
     125   *
     126   * The following statements hold for both versions:
     127   *
     128   *   1) cmax + zmax < N, so the addition does not overflow.
     129   *
     130   *   2) (cmax + zmax) / MPD_RADIX == cmax.
     131   *
     132   *   3) If c <= cmax, then c_next = (c + zmax) / MPD_RADIX <= cmax.
     133   */
     134  void
     135  crt3(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_size_t rsize)
     136  {
     137      mpd_uint_t p1 = mpd_moduli[P1];
     138      mpd_uint_t umod;
     139  #ifdef PPRO
     140      double dmod;
     141      uint32_t dinvmod[3];
     142  #endif
     143      mpd_uint_t a1, a2, a3;
     144      mpd_uint_t s;
     145      mpd_uint_t z[3], t[3];
     146      mpd_uint_t carry[3] = {0,0,0};
     147      mpd_uint_t hi, lo;
     148      mpd_size_t i;
     149  
     150      for (i = 0; i < rsize; i++) {
     151  
     152          a1 = x1[i];
     153          a2 = x2[i];
     154          a3 = x3[i];
     155  
     156          SETMODULUS(P2);
     157          s = ext_submod(a2, a1, umod);
     158          s = MULMOD(s, INV_P1_MOD_P2);
     159  
     160          _mpd_mul_words(&hi, &lo, s, p1);
     161          lo = lo + a1;
     162          if (lo < a1) hi++;
     163  
     164          SETMODULUS(P3);
     165          s = dw_submod(a3, hi, lo, umod);
     166          s = MULMOD(s, INV_P1P2_MOD_P3);
     167  
     168          z[0] = lo;
     169          z[1] = hi;
     170          z[2] = 0;
     171  
     172          _crt_mulP1P2_3(t, s);
     173          _crt_add3(z, t);
     174          _crt_add3(carry, z);
     175  
     176          x1[i] = _crt_div3(carry, carry, MPD_RADIX);
     177      }
     178  
     179      assert(carry[0] == 0 && carry[1] == 0 && carry[2] == 0);
     180  }