(root)/
Python-3.11.7/
Lib/
test/
test_strtod.py
       1  # Tests for the correctly-rounded string -> float conversions
       2  # introduced in Python 2.7 and 3.1.
       3  
       4  import random
       5  import unittest
       6  import re
       7  import sys
       8  import test.support
       9  
      10  if getattr(sys, 'float_repr_style', '') != 'short':
      11      raise unittest.SkipTest('correctly-rounded string->float conversions '
      12                              'not available on this system')
      13  
      14  # Correctly rounded str -> float in pure Python, for comparison.
      15  
      16  strtod_parser = re.compile(r"""    # A numeric string consists of:
      17      (?P<sign>[-+])?          # an optional sign, followed by
      18      (?=\d|\.\d)              # a number with at least one digit
      19      (?P<int>\d*)             # having a (possibly empty) integer part
      20      (?:\.(?P<frac>\d*))?     # followed by an optional fractional part
      21      (?:E(?P<exp>[-+]?\d+))?  # and an optional exponent
      22      \Z
      23  """, re.VERBOSE | re.IGNORECASE).match
      24  
      25  # Pure Python version of correctly rounded string->float conversion.
      26  # Avoids any use of floating-point by returning the result as a hex string.
      27  def strtod(s, mant_dig=53, min_exp = -1021, max_exp = 1024):
      28      """Convert a finite decimal string to a hex string representing an
      29      IEEE 754 binary64 float.  Return 'inf' or '-inf' on overflow.
      30      This function makes no use of floating-point arithmetic at any
      31      stage."""
      32  
      33      # parse string into a pair of integers 'a' and 'b' such that
      34      # abs(decimal value) = a/b, along with a boolean 'negative'.
      35      m = strtod_parser(s)
      36      if m is None:
      37          raise ValueError('invalid numeric string')
      38      fraction = m.group('frac') or ''
      39      intpart = int(m.group('int') + fraction)
      40      exp = int(m.group('exp') or '0') - len(fraction)
      41      negative = m.group('sign') == '-'
      42      a, b = intpart*10**max(exp, 0), 10**max(0, -exp)
      43  
      44      # quick return for zeros
      45      if not a:
      46          return '-0x0.0p+0' if negative else '0x0.0p+0'
      47  
      48      # compute exponent e for result; may be one too small in the case
      49      # that the rounded value of a/b lies in a different binade from a/b
      50      d = a.bit_length() - b.bit_length()
      51      d += (a >> d if d >= 0 else a << -d) >= b
      52      e = max(d, min_exp) - mant_dig
      53  
      54      # approximate a/b by number of the form q * 2**e; adjust e if necessary
      55      a, b = a << max(-e, 0), b << max(e, 0)
      56      q, r = divmod(a, b)
      57      if 2*r > b or 2*r == b and q & 1:
      58          q += 1
      59          if q.bit_length() == mant_dig+1:
      60              q //= 2
      61              e += 1
      62  
      63      # double check that (q, e) has the right form
      64      assert q.bit_length() <= mant_dig and e >= min_exp - mant_dig
      65      assert q.bit_length() == mant_dig or e == min_exp - mant_dig
      66  
      67      # check for overflow and underflow
      68      if e + q.bit_length() > max_exp:
      69          return '-inf' if negative else 'inf'
      70      if not q:
      71          return '-0x0.0p+0' if negative else '0x0.0p+0'
      72  
      73      # for hex representation, shift so # bits after point is a multiple of 4
      74      hexdigs = 1 + (mant_dig-2)//4
      75      shift = 3 - (mant_dig-2)%4
      76      q, e = q << shift, e - shift
      77      return '{}0x{:x}.{:0{}x}p{:+d}'.format(
      78          '-' if negative else '',
      79          q // 16**hexdigs,
      80          q % 16**hexdigs,
      81          hexdigs,
      82          e + 4*hexdigs)
      83  
      84  TEST_SIZE = 10
      85  
      86  class ESC[4;38;5;81mStrtodTests(ESC[4;38;5;149munittestESC[4;38;5;149m.ESC[4;38;5;149mTestCase):
      87      def check_strtod(self, s):
      88          """Compare the result of Python's builtin correctly rounded
      89          string->float conversion (using float) to a pure Python
      90          correctly rounded string->float implementation.  Fail if the
      91          two methods give different results."""
      92  
      93          try:
      94              fs = float(s)
      95          except OverflowError:
      96              got = '-inf' if s[0] == '-' else 'inf'
      97          except MemoryError:
      98              got = 'memory error'
      99          else:
     100              got = fs.hex()
     101          expected = strtod(s)
     102          self.assertEqual(expected, got,
     103                           "Incorrectly rounded str->float conversion for {}: "
     104                           "expected {}, got {}".format(s, expected, got))
     105  
     106      def test_short_halfway_cases(self):
     107          # exact halfway cases with a small number of significant digits
     108          for k in 0, 5, 10, 15, 20:
     109              # upper = smallest integer >= 2**54/5**k
     110              upper = -(-2**54//5**k)
     111              # lower = smallest odd number >= 2**53/5**k
     112              lower = -(-2**53//5**k)
     113              if lower % 2 == 0:
     114                  lower += 1
     115              for i in range(TEST_SIZE):
     116                  # Select a random odd n in [2**53/5**k,
     117                  # 2**54/5**k). Then n * 10**k gives a halfway case
     118                  # with small number of significant digits.
     119                  n, e = random.randrange(lower, upper, 2), k
     120  
     121                  # Remove any additional powers of 5.
     122                  while n % 5 == 0:
     123                      n, e = n // 5, e + 1
     124                  assert n % 10 in (1, 3, 7, 9)
     125  
     126                  # Try numbers of the form n * 2**p2 * 10**e, p2 >= 0,
     127                  # until n * 2**p2 has more than 20 significant digits.
     128                  digits, exponent = n, e
     129                  while digits < 10**20:
     130                      s = '{}e{}'.format(digits, exponent)
     131                      self.check_strtod(s)
     132                      # Same again, but with extra trailing zeros.
     133                      s = '{}e{}'.format(digits * 10**40, exponent - 40)
     134                      self.check_strtod(s)
     135                      digits *= 2
     136  
     137                  # Try numbers of the form n * 5**p2 * 10**(e - p5), p5
     138                  # >= 0, with n * 5**p5 < 10**20.
     139                  digits, exponent = n, e
     140                  while digits < 10**20:
     141                      s = '{}e{}'.format(digits, exponent)
     142                      self.check_strtod(s)
     143                      # Same again, but with extra trailing zeros.
     144                      s = '{}e{}'.format(digits * 10**40, exponent - 40)
     145                      self.check_strtod(s)
     146                      digits *= 5
     147                      exponent -= 1
     148  
     149      def test_halfway_cases(self):
     150          # test halfway cases for the round-half-to-even rule
     151          for i in range(100 * TEST_SIZE):
     152              # bit pattern for a random finite positive (or +0.0) float
     153              bits = random.randrange(2047*2**52)
     154  
     155              # convert bit pattern to a number of the form m * 2**e
     156              e, m = divmod(bits, 2**52)
     157              if e:
     158                  m, e = m + 2**52, e - 1
     159              e -= 1074
     160  
     161              # add 0.5 ulps
     162              m, e = 2*m + 1, e - 1
     163  
     164              # convert to a decimal string
     165              if e >= 0:
     166                  digits = m << e
     167                  exponent = 0
     168              else:
     169                  # m * 2**e = (m * 5**-e) * 10**e
     170                  digits = m * 5**-e
     171                  exponent = e
     172              s = '{}e{}'.format(digits, exponent)
     173              self.check_strtod(s)
     174  
     175      def test_boundaries(self):
     176          # boundaries expressed as triples (n, e, u), where
     177          # n*10**e is an approximation to the boundary value and
     178          # u*10**e is 1ulp
     179          boundaries = [
     180              (10000000000000000000, -19, 1110),   # a power of 2 boundary (1.0)
     181              (17976931348623159077, 289, 1995),   # overflow boundary (2.**1024)
     182              (22250738585072013831, -327, 4941),  # normal/subnormal (2.**-1022)
     183              (0, -327, 4941),                     # zero
     184              ]
     185          for n, e, u in boundaries:
     186              for j in range(1000):
     187                  digits = n + random.randrange(-3*u, 3*u)
     188                  exponent = e
     189                  s = '{}e{}'.format(digits, exponent)
     190                  self.check_strtod(s)
     191                  n *= 10
     192                  u *= 10
     193                  e -= 1
     194  
     195      def test_underflow_boundary(self):
     196          # test values close to 2**-1075, the underflow boundary; similar
     197          # to boundary_tests, except that the random error doesn't scale
     198          # with n
     199          for exponent in range(-400, -320):
     200              base = 10**-exponent // 2**1075
     201              for j in range(TEST_SIZE):
     202                  digits = base + random.randrange(-1000, 1000)
     203                  s = '{}e{}'.format(digits, exponent)
     204                  self.check_strtod(s)
     205  
     206      def test_bigcomp(self):
     207          for ndigs in 5, 10, 14, 15, 16, 17, 18, 19, 20, 40, 41, 50:
     208              dig10 = 10**ndigs
     209              for i in range(10 * TEST_SIZE):
     210                  digits = random.randrange(dig10)
     211                  exponent = random.randrange(-400, 400)
     212                  s = '{}e{}'.format(digits, exponent)
     213                  self.check_strtod(s)
     214  
     215      def test_parsing(self):
     216          # make '0' more likely to be chosen than other digits
     217          digits = '000000123456789'
     218          signs = ('+', '-', '')
     219  
     220          # put together random short valid strings
     221          # \d*[.\d*]?e
     222          for i in range(1000):
     223              for j in range(TEST_SIZE):
     224                  s = random.choice(signs)
     225                  intpart_len = random.randrange(5)
     226                  s += ''.join(random.choice(digits) for _ in range(intpart_len))
     227                  if random.choice([True, False]):
     228                      s += '.'
     229                      fracpart_len = random.randrange(5)
     230                      s += ''.join(random.choice(digits)
     231                                   for _ in range(fracpart_len))
     232                  else:
     233                      fracpart_len = 0
     234                  if random.choice([True, False]):
     235                      s += random.choice(['e', 'E'])
     236                      s += random.choice(signs)
     237                      exponent_len = random.randrange(1, 4)
     238                      s += ''.join(random.choice(digits)
     239                                   for _ in range(exponent_len))
     240  
     241                  if intpart_len + fracpart_len:
     242                      self.check_strtod(s)
     243                  else:
     244                      try:
     245                          float(s)
     246                      except ValueError:
     247                          pass
     248                      else:
     249                          assert False, "expected ValueError"
     250  
     251      @test.support.bigmemtest(size=test.support._2G+10, memuse=3, dry_run=False)
     252      def test_oversized_digit_strings(self, maxsize):
     253          # Input string whose length doesn't fit in an INT.
     254          s = "1." + "1" * maxsize
     255          with self.assertRaises(ValueError):
     256              float(s)
     257          del s
     258  
     259          s = "0." + "0" * maxsize + "1"
     260          with self.assertRaises(ValueError):
     261              float(s)
     262          del s
     263  
     264      def test_large_exponents(self):
     265          # Verify that the clipping of the exponent in strtod doesn't affect the
     266          # output values.
     267          def positive_exp(n):
     268              """ Long string with value 1.0 and exponent n"""
     269              return '0.{}1e+{}'.format('0'*(n-1), n)
     270  
     271          def negative_exp(n):
     272              """ Long string with value 1.0 and exponent -n"""
     273              return '1{}e-{}'.format('0'*n, n)
     274  
     275          self.assertEqual(float(positive_exp(10000)), 1.0)
     276          self.assertEqual(float(positive_exp(20000)), 1.0)
     277          self.assertEqual(float(positive_exp(30000)), 1.0)
     278          self.assertEqual(float(negative_exp(10000)), 1.0)
     279          self.assertEqual(float(negative_exp(20000)), 1.0)
     280          self.assertEqual(float(negative_exp(30000)), 1.0)
     281  
     282      def test_particular(self):
     283          # inputs that produced crashes or incorrectly rounded results with
     284          # previous versions of dtoa.c, for various reasons
     285          test_strings = [
     286              # issue 7632 bug 1, originally reported failing case
     287              '2183167012312112312312.23538020374420446192e-370',
     288              # 5 instances of issue 7632 bug 2
     289              '12579816049008305546974391768996369464963024663104e-357',
     290              '17489628565202117263145367596028389348922981857013e-357',
     291              '18487398785991994634182916638542680759613590482273e-357',
     292              '32002864200581033134358724675198044527469366773928e-358',
     293              '94393431193180696942841837085033647913224148539854e-358',
     294              '73608278998966969345824653500136787876436005957953e-358',
     295              '64774478836417299491718435234611299336288082136054e-358',
     296              '13704940134126574534878641876947980878824688451169e-357',
     297              '46697445774047060960624497964425416610480524760471e-358',
     298              # failing case for bug introduced by METD in r77451 (attempted
     299              # fix for issue 7632, bug 2), and fixed in r77482.
     300              '28639097178261763178489759107321392745108491825303e-311',
     301              # two numbers demonstrating a flaw in the bigcomp 'dig == 0'
     302              # correction block (issue 7632, bug 3)
     303              '1.00000000000000001e44',
     304              '1.0000000000000000100000000000000000000001e44',
     305              # dtoa.c bug for numbers just smaller than a power of 2 (issue
     306              # 7632, bug 4)
     307              '99999999999999994487665465554760717039532578546e-47',
     308              # failing case for off-by-one error introduced by METD in
     309              # r77483 (dtoa.c cleanup), fixed in r77490
     310              '965437176333654931799035513671997118345570045914469' #...
     311              '6213413350821416312194420007991306908470147322020121018368e0',
     312              # incorrect lsb detection for round-half-to-even when
     313              # bc->scale != 0 (issue 7632, bug 6).
     314              '104308485241983990666713401708072175773165034278685' #...
     315              '682646111762292409330928739751702404658197872319129' #...
     316              '036519947435319418387839758990478549477777586673075' #...
     317              '945844895981012024387992135617064532141489278815239' #...
     318              '849108105951619997829153633535314849999674266169258' #...
     319              '928940692239684771590065027025835804863585454872499' #...
     320              '320500023126142553932654370362024104462255244034053' #...
     321              '203998964360882487378334860197725139151265590832887' #...
     322              '433736189468858614521708567646743455601905935595381' #...
     323              '852723723645799866672558576993978025033590728687206' #...
     324              '296379801363024094048327273913079612469982585674824' #...
     325              '156000783167963081616214710691759864332339239688734' #...
     326              '656548790656486646106983450809073750535624894296242' #...
     327              '072010195710276073042036425579852459556183541199012' #...
     328              '652571123898996574563824424330960027873516082763671875e-1075',
     329              # demonstration that original fix for issue 7632 bug 1 was
     330              # buggy; the exit condition was too strong
     331              '247032822920623295e-341',
     332              # demonstrate similar problem to issue 7632 bug1: crash
     333              # with 'oversized quotient in quorem' message.
     334              '99037485700245683102805043437346965248029601286431e-373',
     335              '99617639833743863161109961162881027406769510558457e-373',
     336              '98852915025769345295749278351563179840130565591462e-372',
     337              '99059944827693569659153042769690930905148015876788e-373',
     338              '98914979205069368270421829889078356254059760327101e-372',
     339              # issue 7632 bug 5: the following 2 strings convert differently
     340              '1000000000000000000000000000000000000000e-16',
     341              '10000000000000000000000000000000000000000e-17',
     342              # issue 7632 bug 7
     343              '991633793189150720000000000000000000000000000000000000000e-33',
     344              # And another, similar, failing halfway case
     345              '4106250198039490000000000000000000000000000000000000000e-38',
     346              # issue 7632 bug 8:  the following produced 10.0
     347              '10.900000000000000012345678912345678912345',
     348  
     349              # two humongous values from issue 7743
     350              '116512874940594195638617907092569881519034793229385' #...
     351              '228569165191541890846564669771714896916084883987920' #...
     352              '473321268100296857636200926065340769682863349205363' #...
     353              '349247637660671783209907949273683040397979984107806' #...
     354              '461822693332712828397617946036239581632976585100633' #...
     355              '520260770761060725403904123144384571612073732754774' #...
     356              '588211944406465572591022081973828448927338602556287' #...
     357              '851831745419397433012491884869454462440536895047499' #...
     358              '436551974649731917170099387762871020403582994193439' #...
     359              '761933412166821484015883631622539314203799034497982' #...
     360              '130038741741727907429575673302461380386596501187482' #...
     361              '006257527709842179336488381672818798450229339123527' #...
     362              '858844448336815912020452294624916993546388956561522' #...
     363              '161875352572590420823607478788399460162228308693742' #...
     364              '05287663441403533948204085390898399055004119873046875e-1075',
     365  
     366              '525440653352955266109661060358202819561258984964913' #...
     367              '892256527849758956045218257059713765874251436193619' #...
     368              '443248205998870001633865657517447355992225852945912' #...
     369              '016668660000210283807209850662224417504752264995360' #...
     370              '631512007753855801075373057632157738752800840302596' #...
     371              '237050247910530538250008682272783660778181628040733' #...
     372              '653121492436408812668023478001208529190359254322340' #...
     373              '397575185248844788515410722958784640926528544043090' #...
     374              '115352513640884988017342469275006999104519620946430' #...
     375              '818767147966495485406577703972687838176778993472989' #...
     376              '561959000047036638938396333146685137903018376496408' #...
     377              '319705333868476925297317136513970189073693314710318' #...
     378              '991252811050501448326875232850600451776091303043715' #...
     379              '157191292827614046876950225714743118291034780466325' #...
     380              '085141343734564915193426994587206432697337118211527' #...
     381              '278968731294639353354774788602467795167875117481660' #...
     382              '4738791256853675690543663283782215866825e-1180',
     383  
     384              # exercise exit conditions in bigcomp comparison loop
     385              '2602129298404963083833853479113577253105939995688e2',
     386              '260212929840496308383385347911357725310593999568896e0',
     387              '26021292984049630838338534791135772531059399956889601e-2',
     388              '260212929840496308383385347911357725310593999568895e0',
     389              '260212929840496308383385347911357725310593999568897e0',
     390              '260212929840496308383385347911357725310593999568996e0',
     391              '260212929840496308383385347911357725310593999568866e0',
     392              # 2**53
     393              '9007199254740992.00',
     394              # 2**1024 - 2**970:  exact overflow boundary.  All values
     395              # smaller than this should round to something finite;  any value
     396              # greater than or equal to this one overflows.
     397              '179769313486231580793728971405303415079934132710037' #...
     398              '826936173778980444968292764750946649017977587207096' #...
     399              '330286416692887910946555547851940402630657488671505' #...
     400              '820681908902000708383676273854845817711531764475730' #...
     401              '270069855571366959622842914819860834936475292719074' #...
     402              '168444365510704342711559699508093042880177904174497792',
     403              # 2**1024 - 2**970 - tiny
     404              '179769313486231580793728971405303415079934132710037' #...
     405              '826936173778980444968292764750946649017977587207096' #...
     406              '330286416692887910946555547851940402630657488671505' #...
     407              '820681908902000708383676273854845817711531764475730' #...
     408              '270069855571366959622842914819860834936475292719074' #...
     409              '168444365510704342711559699508093042880177904174497791.999',
     410              # 2**1024 - 2**970 + tiny
     411              '179769313486231580793728971405303415079934132710037' #...
     412              '826936173778980444968292764750946649017977587207096' #...
     413              '330286416692887910946555547851940402630657488671505' #...
     414              '820681908902000708383676273854845817711531764475730' #...
     415              '270069855571366959622842914819860834936475292719074' #...
     416              '168444365510704342711559699508093042880177904174497792.001',
     417              # 1 - 2**-54, +-tiny
     418              '999999999999999944488848768742172978818416595458984375e-54',
     419              '9999999999999999444888487687421729788184165954589843749999999e-54',
     420              '9999999999999999444888487687421729788184165954589843750000001e-54',
     421              # Value found by Rick Regan that gives a result of 2**-968
     422              # under Gay's dtoa.c (as of Nov 04, 2010);  since fixed.
     423              # (Fixed some time ago in Python's dtoa.c.)
     424              '0.0000000000000000000000000000000000000000100000000' #...
     425              '000000000576129113423785429971690421191214034235435' #...
     426              '087147763178149762956868991692289869941246658073194' #...
     427              '51982237978882039897143840789794921875',
     428              ]
     429          for s in test_strings:
     430              self.check_strtod(s)
     431  
     432  if __name__ == "__main__":
     433      unittest.main()