(root)/
mpfr-4.2.1/
src/
tanh.c
       1  /* mpfr_tanh -- hyperbolic tangent
       2  
       3  Copyright 2001-2023 Free Software Foundation, Inc.
       4  Contributed by the AriC and Caramba projects, INRIA.
       5  
       6  This file is part of the GNU MPFR Library.
       7  
       8  The GNU MPFR Library is free software; you can redistribute it and/or modify
       9  it under the terms of the GNU Lesser General Public License as published by
      10  the Free Software Foundation; either version 3 of the License, or (at your
      11  option) any later version.
      12  
      13  The GNU MPFR Library is distributed in the hope that it will be useful, but
      14  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
      15  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
      16  License for more details.
      17  
      18  You should have received a copy of the GNU Lesser General Public License
      19  along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
      20  https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
      21  51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
      22  
      23  #define MPFR_NEED_LONGLONG_H
      24  #include "mpfr-impl.h"
      25  
      26  int
      27  mpfr_tanh (mpfr_ptr y, mpfr_srcptr xt, mpfr_rnd_t rnd_mode)
      28  {
      29    /****** Declaration ******/
      30    mpfr_t x;
      31    int inexact;
      32    MPFR_SAVE_EXPO_DECL (expo);
      33  
      34    MPFR_LOG_FUNC
      35      (("x[%Pd]=%.*Rg rnd=%d", mpfr_get_prec (xt), mpfr_log_prec, xt, rnd_mode),
      36       ("y[%Pd]=%.*Rg inexact=%d",
      37        mpfr_get_prec (y), mpfr_log_prec, y, inexact));
      38  
      39    /* Special value checking */
      40    if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt)))
      41      {
      42        if (MPFR_IS_NAN (xt))
      43          {
      44            MPFR_SET_NAN (y);
      45            MPFR_RET_NAN;
      46          }
      47        else if (MPFR_IS_INF (xt))
      48          {
      49            /* tanh(inf) = 1 && tanh(-inf) = -1 */
      50            return mpfr_set_si (y, MPFR_INT_SIGN (xt), rnd_mode);
      51          }
      52        else /* tanh (0) = 0 and xt is zero */
      53          {
      54            MPFR_ASSERTD (MPFR_IS_ZERO(xt));
      55            MPFR_SET_ZERO (y);
      56            MPFR_SET_SAME_SIGN (y, xt);
      57            MPFR_RET (0);
      58          }
      59      }
      60  
      61    /* tanh(x) = x - x^3/3 + ... so the error is < 2^(3*EXP(x)-1) */
      62    MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, xt, -2 * MPFR_GET_EXP (xt), 1, 0,
      63                                      rnd_mode, {});
      64  
      65    MPFR_TMP_INIT_ABS (x, xt);
      66  
      67    MPFR_SAVE_EXPO_MARK (expo);
      68  
      69    /* General case */
      70    {
      71      /* Declaration of the intermediary variable */
      72      mpfr_t t, te;
      73      mpfr_exp_t d;
      74  
      75      /* Declaration of the size variable */
      76      mpfr_prec_t Ny = MPFR_PREC(y);   /* target precision */
      77      mpfr_prec_t Nt;                  /* working precision */
      78      long int err;                  /* error */
      79      int sign = MPFR_SIGN (xt);
      80      MPFR_ZIV_DECL (loop);
      81      MPFR_GROUP_DECL (group);
      82  
      83      /* First check for BIG overflow of exp(2*x):
      84         For x > 0, exp(2*x) > 2^(2*x)
      85         If 2 ^(2*x) > 2^emax or x>emax/2, there is an overflow */
      86      if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emax/2) >= 0)) {
      87        /* initialize of intermediary variables
      88           since 'set_one' label assumes the variables have been
      89           initialize */
      90        MPFR_GROUP_INIT_2 (group, MPFR_PREC_MIN, t, te);
      91        goto set_one;
      92      }
      93  
      94      /* Compute the precision of intermediary variable */
      95      /* The optimal number of bits: see algorithms.tex */
      96      Nt = Ny + MPFR_INT_CEIL_LOG2 (Ny) + 4;
      97      /* if x is small, there will be a cancellation in exp(2x)-1 */
      98      if (MPFR_GET_EXP (x) < 0)
      99        Nt += -MPFR_GET_EXP (x);
     100  
     101      /* The error analysis in algorithms.tex assumes that x is exactly
     102         representable with working precision Nt.
     103         FIXME: adapt the error analysis for the case Nt < PREC(x). */
     104      if (Nt < MPFR_PREC(x))
     105        Nt = MPFR_PREC(x);
     106  
     107      /* initialize of intermediary variable */
     108      MPFR_GROUP_INIT_2 (group, Nt, t, te);
     109  
     110      MPFR_ZIV_INIT (loop, Nt);
     111      for (;;)
     112        {
     113          /* tanh = (exp(2x)-1)/(exp(2x)+1) */
     114          inexact = mpfr_mul_2ui (te, x, 1, MPFR_RNDN);  /* 2x */
     115          MPFR_ASSERTD(inexact == 0); /* see FIXME above */
     116          /* since x > 0, we can only have an overflow */
     117          mpfr_exp (te, te, MPFR_RNDN);        /* exp(2x) */
     118          if (MPFR_UNLIKELY (MPFR_IS_INF (te)))
     119            {
     120            set_one:
     121              inexact = MPFR_FROM_SIGN_TO_INT (sign);
     122              mpfr_set4 (y, __gmpfr_one, MPFR_RNDN, sign);
     123              if (MPFR_IS_LIKE_RNDZ (rnd_mode, MPFR_IS_NEG_SIGN (sign)))
     124                {
     125                  inexact = -inexact;
     126                  mpfr_nexttozero (y);
     127                }
     128              break;
     129            }
     130          d = MPFR_GET_EXP (te);               /* For Error calculation */
     131          mpfr_add_ui (t, te, 1, MPFR_RNDD);   /* exp(2x) + 1 */
     132          mpfr_sub_ui (te, te, 1, MPFR_RNDU);  /* exp(2x) - 1 */
     133          d = d - MPFR_GET_EXP (te);
     134          mpfr_div (t, te, t, MPFR_RNDN);      /* (exp(2x)-1)/(exp(2x)+1) */
     135  
     136          /* Calculation of the error, see algorithms.tex; the current value
     137             of d is k in algorithms.tex. */
     138          d = MAX(3, d + 1);  /* d = exponent in 2^(max(3,k+1)) */
     139          err = Nt - (d + 1);
     140  
     141          /* The inequality is the condition max(3,k+1) <= floor(p/2). */
     142          if (MPFR_LIKELY (d <= Nt / 2 &&
     143                           MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
     144            {
     145              inexact = mpfr_set4 (y, t, rnd_mode, sign);
     146              break;
     147            }
     148  
     149          /* if t=1, we still can round since |sinh(x)| < 1 */
     150          if (MPFR_GET_EXP (t) == 1)
     151            goto set_one;
     152  
     153          /* Actualisation of the precision */
     154          MPFR_ZIV_NEXT (loop, Nt);
     155          MPFR_GROUP_REPREC_2 (group, Nt, t, te);
     156        }
     157      MPFR_ZIV_FREE (loop);
     158      MPFR_GROUP_CLEAR (group);
     159    }
     160    MPFR_SAVE_EXPO_FREE (expo);
     161    inexact = mpfr_check_range (y, inexact, rnd_mode);
     162  
     163    return inexact;
     164  }
     165