(root)/
mpfr-4.2.1/
src/
subnormal.c
       1  /* mpfr_subnormalize -- Subnormalize a floating point number
       2     emulating sub-normal numbers.
       3  
       4  Copyright 2005-2023 Free Software Foundation, Inc.
       5  Contributed by the AriC and Caramba projects, INRIA.
       6  
       7  This file is part of the GNU MPFR Library.
       8  
       9  The GNU MPFR Library is free software; you can redistribute it and/or modify
      10  it under the terms of the GNU Lesser General Public License as published by
      11  the Free Software Foundation; either version 3 of the License, or (at your
      12  option) any later version.
      13  
      14  The GNU MPFR Library is distributed in the hope that it will be useful, but
      15  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
      16  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
      17  License for more details.
      18  
      19  You should have received a copy of the GNU Lesser General Public License
      20  along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
      21  https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
      22  51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
      23  
      24  #include "mpfr-impl.h"
      25  
      26  /* For MPFR_RNDN, we can have a problem of double rounding.
      27     In such a case, this table helps to conclude what to do (y positive):
      28       Rounding Bit |  Sticky Bit | inexact  | Action    | new inexact
      29       0            |   ?         |  ?       | Trunc     | sticky
      30       1            |   0         |  1       | Trunc     |
      31       1            |   0         |  0       | Trunc if even |
      32       1            |   0         | -1       | AddOneUlp |
      33       1            |   1         |  ?       | AddOneUlp |
      34  
      35     For other rounding modes, there isn't such a problem.
      36     Just round it again and merge the ternary values.
      37  
      38     Set the inexact flag if the returned ternary value is non-zero.
      39     Set the underflow flag if a second rounding occurred (whether this
      40     rounding is exact or not). See
      41       https://sympa.inria.fr/sympa/arc/mpfr/2009-06/msg00000.html
      42       https://sympa.inria.fr/sympa/arc/mpfr/2009-06/msg00008.html
      43       https://sympa.inria.fr/sympa/arc/mpfr/2009-06/msg00010.html
      44  */
      45  
      46  int
      47  mpfr_subnormalize (mpfr_ptr y, int old_inexact, mpfr_rnd_t rnd)
      48  {
      49    int sign;
      50  
      51    /* The subnormal exponent range is [ emin, emin + MPFR_PREC(y) - 2 ] */
      52    if (MPFR_LIKELY (MPFR_IS_SINGULAR (y)
      53                     || (MPFR_GET_EXP (y) >=
      54                         __gmpfr_emin + (mpfr_exp_t) MPFR_PREC (y) - 1)))
      55      MPFR_RET (old_inexact);
      56  
      57    MPFR_SET_UNDERFLOW ();
      58    sign = MPFR_SIGN (y);
      59  
      60    /* We have to emulate one bit rounding if EXP(y) = emin */
      61    if (MPFR_GET_EXP (y) == __gmpfr_emin)
      62      {
      63        /* If this is a power of 2, we don't need rounding.
      64           It handles cases when |y| = 0.1 * 2^emin */
      65        if (mpfr_powerof2_raw (y))
      66          MPFR_RET (old_inexact);
      67  
      68        /* We keep the same sign for y.
      69           Assuming Y is the real value and y the approximation
      70           and since y is not a power of 2:  0.5*2^emin < Y < 1*2^emin
      71           We also know the direction of the error thanks to ternary value. */
      72  
      73        if (rnd == MPFR_RNDN || rnd == MPFR_RNDNA)
      74          {
      75            mp_limb_t *mant, rb, sb;
      76            mp_size_t s;
      77            /* We need the rounding bit and the sticky bit. Read them
      78               and use the previous table to conclude. */
      79            s = MPFR_LIMB_SIZE (y) - 1;
      80            mant = MPFR_MANT (y) + s;
      81            rb = *mant & (MPFR_LIMB_HIGHBIT >> 1);
      82            if (rb == 0)
      83              goto set_min;
      84            sb = *mant & ((MPFR_LIMB_HIGHBIT >> 1) - 1);
      85            while (sb == 0 && s-- != 0)
      86              sb = *--mant;
      87            if (sb != 0)
      88              goto set_min_p1;
      89            /* Rounding bit is 1 and sticky bit is 0.
      90               We need to examine old inexact flag to conclude. */
      91            if ((old_inexact > 0 && sign > 0) ||
      92                (old_inexact < 0 && sign < 0))
      93              goto set_min;
      94            /* If inexact != 0, return 0.1*2^(emin+1).
      95               Otherwise, rounding bit = 1, sticky bit = 0 and inexact = 0
      96               So we have 0.1100000000000000000000000*2^emin exactly.
      97               We return 0.1*2^(emin+1) according to the even-rounding
      98               rule on subnormals. Note the same holds for RNDNA. */
      99            goto set_min_p1;
     100          }
     101        else if (MPFR_IS_LIKE_RNDZ (rnd, MPFR_IS_NEG (y)))
     102          {
     103          set_min:
     104            mpfr_setmin (y, __gmpfr_emin);
     105            MPFR_RET (-sign);
     106          }
     107        else
     108          {
     109          set_min_p1:
     110            /* Note: mpfr_setmin will abort if __gmpfr_emax == __gmpfr_emin. */
     111            mpfr_setmin (y, __gmpfr_emin + 1);
     112            MPFR_RET (sign);
     113          }
     114      }
     115    else /* Hard case: It is more or less the same problem as mpfr_cache */
     116      {
     117        mpfr_t dest;
     118        mpfr_prec_t q;
     119        mpfr_rnd_t rnd2;
     120        int inexact, inex2;
     121  
     122        MPFR_ASSERTD (MPFR_GET_EXP (y) > __gmpfr_emin);
     123  
     124        /* Compute the intermediary precision */
     125        q = (mpfr_uexp_t) MPFR_GET_EXP (y) - __gmpfr_emin + 1;
     126        MPFR_ASSERTD (q >= MPFR_PREC_MIN && q < MPFR_PREC (y));
     127  
     128        /* TODO: perform the rounding in place. */
     129        mpfr_init2 (dest, q);
     130        /* Round y in dest */
     131        MPFR_SET_EXP (dest, MPFR_GET_EXP (y));
     132        MPFR_SET_SIGN (dest, sign);
     133        rnd2 = rnd == MPFR_RNDNA ? MPFR_RNDN : rnd;
     134        MPFR_RNDRAW_EVEN (inexact, dest,
     135                          MPFR_MANT (y), MPFR_PREC (y), rnd2, sign,
     136                          MPFR_SET_EXP (dest, MPFR_GET_EXP (dest) + 1));
     137        if (MPFR_LIKELY (old_inexact != 0))
     138          {
     139            if (MPFR_UNLIKELY (rnd2 == MPFR_RNDN &&
     140                               (inexact == MPFR_EVEN_INEX ||
     141                                inexact == -MPFR_EVEN_INEX)))
     142              {
     143                /* If both roundings are in the same direction,
     144                   we have to go back in the other direction.
     145                   For MPFR_RNDNA it is the same, since we are not
     146                   exactly in the middle case (old_inexact != 0). */
     147                if (SAME_SIGN (inexact, old_inexact))
     148                  {
     149                    if (SAME_SIGN (inexact, MPFR_INT_SIGN (y)))
     150                      mpfr_nexttozero (dest);
     151                    else  /* subnormal range, thus no overflow */
     152                      {
     153                        mpfr_nexttoinf (dest);
     154                        MPFR_ASSERTD(!MPFR_IS_INF (dest));
     155                      }
     156                    inexact = -inexact;
     157                  }
     158              }
     159            else if (MPFR_UNLIKELY (inexact == 0))
     160              inexact = old_inexact;
     161          }
     162        else if (rnd == MPFR_RNDNA &&
     163                 (inexact == MPFR_EVEN_INEX || inexact == -MPFR_EVEN_INEX))
     164          {
     165            /* We are in the middle case: since we used RNDN to round, we should
     166               round in the opposite direction when inexact has the opposite
     167               sign of y. */
     168            if (!SAME_SIGN (inexact, MPFR_INT_SIGN (y)))
     169              {
     170                mpfr_nexttoinf (dest);
     171                MPFR_ASSERTD(!MPFR_IS_INF (dest));
     172                inexact = -inexact;
     173              }
     174          }
     175  
     176        inex2 = mpfr_set (y, dest, rnd);
     177        MPFR_ASSERTN (inex2 == 0);
     178        MPFR_ASSERTN (MPFR_IS_PURE_FP (y));
     179        mpfr_clear (dest);
     180  
     181        MPFR_RET (inexact);
     182      }
     183  }