(root)/
mpfr-4.2.1/
src/
sinh.c
       1  /* mpfr_sinh -- hyperbolic sine
       2  
       3  Copyright 2001-2023 Free Software Foundation, Inc.
       4  Contributed by the AriC and Caramba projects, INRIA.
       5  
       6  This file is part of the GNU MPFR Library.
       7  
       8  The GNU MPFR Library is free software; you can redistribute it and/or modify
       9  it under the terms of the GNU Lesser General Public License as published by
      10  the Free Software Foundation; either version 3 of the License, or (at your
      11  option) any later version.
      12  
      13  The GNU MPFR Library is distributed in the hope that it will be useful, but
      14  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
      15  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
      16  License for more details.
      17  
      18  You should have received a copy of the GNU Lesser General Public License
      19  along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
      20  https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
      21  51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
      22  
      23  #define MPFR_NEED_LONGLONG_H
      24  #include "mpfr-impl.h"
      25  
      26   /* The computation of sinh is done by
      27      sinh(x) = 1/2 [e^(x)-e^(-x)]          */
      28  
      29  int
      30  mpfr_sinh (mpfr_ptr y, mpfr_srcptr xt, mpfr_rnd_t rnd_mode)
      31  {
      32    mpfr_t x;
      33    int inexact;
      34  
      35    MPFR_LOG_FUNC
      36      (("x[%Pd]=%.*Rg rnd=%d", mpfr_get_prec (xt), mpfr_log_prec, xt, rnd_mode),
      37       ("y[%Pd]=%.*Rg inexact=%d",
      38        mpfr_get_prec (y), mpfr_log_prec, y, inexact));
      39  
      40    if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt)))
      41      {
      42        if (MPFR_IS_NAN (xt))
      43          {
      44            MPFR_SET_NAN (y);
      45            MPFR_RET_NAN;
      46          }
      47        else if (MPFR_IS_INF (xt))
      48          {
      49            MPFR_SET_INF (y);
      50            MPFR_SET_SAME_SIGN (y, xt);
      51            MPFR_RET (0);
      52          }
      53        else /* xt is zero */
      54          {
      55            MPFR_ASSERTD (MPFR_IS_ZERO (xt));
      56            MPFR_SET_ZERO (y);   /* sinh(0) = 0 */
      57            MPFR_SET_SAME_SIGN (y, xt);
      58            MPFR_RET (0);
      59          }
      60      }
      61  
      62    /* sinh(x) = x + x^3/6 + ... so the error is < 2^(3*EXP(x)-2) */
      63    MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, xt, -2 * MPFR_GET_EXP(xt), 2, 1,
      64                                      rnd_mode, {});
      65  
      66    MPFR_TMP_INIT_ABS (x, xt);
      67  
      68    {
      69      mpfr_t t, ti;
      70      mpfr_exp_t d;
      71      mpfr_prec_t Nt;    /* Precision of the intermediary variable */
      72      long int err;    /* Precision of error */
      73      MPFR_ZIV_DECL (loop);
      74      MPFR_SAVE_EXPO_DECL (expo);
      75      MPFR_GROUP_DECL (group);
      76  
      77      MPFR_SAVE_EXPO_MARK (expo);
      78  
      79      /* compute the precision of intermediary variable */
      80      Nt = MAX (MPFR_PREC (x), MPFR_PREC (y));
      81      /* the optimal number of bits : see algorithms.ps */
      82      Nt = Nt + MPFR_INT_CEIL_LOG2 (Nt) + 4;
      83      /* If x is near 0, exp(x) - 1/exp(x) = 2*x+x^3/3+O(x^5) */
      84      if (MPFR_GET_EXP (x) < 0)
      85        Nt -= 2*MPFR_GET_EXP (x);
      86  
      87      /* initialize of intermediary variables */
      88      MPFR_GROUP_INIT_2 (group, Nt, t, ti);
      89  
      90      /* First computation of sinh */
      91      MPFR_ZIV_INIT (loop, Nt);
      92      for (;;)
      93        {
      94          MPFR_BLOCK_DECL (flags);
      95  
      96          /* compute sinh */
      97          MPFR_BLOCK (flags, mpfr_exp (t, x, MPFR_RNDD));
      98          if (MPFR_OVERFLOW (flags))
      99            /* exp(x) does overflow */
     100            {
     101              /* sinh(x) = 2 * sinh(x/2) * cosh(x/2) */
     102              mpfr_div_2ui (ti, x, 1, MPFR_RNDD); /* exact */
     103  
     104              /* t <- cosh(x/2): error(t) <= 1 ulp(t) */
     105              MPFR_BLOCK (flags, mpfr_cosh (t, ti, MPFR_RNDD));
     106              if (MPFR_OVERFLOW (flags))
     107                /* when x>1 we have |sinh(x)| >= cosh(x/2), so sinh(x)
     108                   overflows too */
     109                {
     110                  inexact = mpfr_overflow (y, rnd_mode, MPFR_SIGN (xt));
     111                  MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
     112                  break;
     113                }
     114  
     115              /* ti <- sinh(x/2): error(ti) <= 1 ulp(ti)
     116                 cannot overflow because 0 < sinh(x) < cosh(x) when x > 0 */
     117              mpfr_sinh (ti, ti, MPFR_RNDD);
     118  
     119              /* multiplication below, error(t) <= 5 ulp(t) */
     120              MPFR_BLOCK (flags, mpfr_mul (t, t, ti, MPFR_RNDD));
     121              if (MPFR_OVERFLOW (flags))
     122                {
     123                  inexact = mpfr_overflow (y, rnd_mode, MPFR_SIGN (xt));
     124                  MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
     125                  break;
     126                }
     127  
     128              /* doubling below, exact */
     129              MPFR_BLOCK (flags, mpfr_mul_2ui (t, t, 1, MPFR_RNDN));
     130              if (MPFR_OVERFLOW (flags))
     131                {
     132                  inexact = mpfr_overflow (y, rnd_mode, MPFR_SIGN (xt));
     133                  MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
     134                  break;
     135                }
     136  
     137              /* we have lost at most 3 bits of precision */
     138              err = Nt - 3;
     139              if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, MPFR_PREC (y),
     140                                               rnd_mode)))
     141                {
     142                  inexact = mpfr_set4 (y, t, rnd_mode, MPFR_SIGN (xt));
     143                  break;
     144                }
     145              err = Nt; /* double the precision */
     146            }
     147          else
     148            {
     149              d = MPFR_GET_EXP (t);
     150              mpfr_ui_div (ti, 1, t, MPFR_RNDU); /* 1/exp(x) */
     151              mpfr_sub (t, t, ti, MPFR_RNDN);    /* exp(x) - 1/exp(x) */
     152              mpfr_div_2ui (t, t, 1, MPFR_RNDN);  /* 1/2(exp(x) - 1/exp(x)) */
     153  
     154              /* it may be that t is zero (in fact, it can only occur when te=1,
     155                 and thus ti=1 too) */
     156              if (MPFR_IS_ZERO (t))
     157                err = Nt; /* double the precision */
     158              else
     159                {
     160                  /* calculation of the error */
     161                  d = d - MPFR_GET_EXP (t) + 2;
     162                  /* error estimate: err = Nt-(__gmpfr_ceil_log2(1+pow(2,d)));*/
     163                  err = Nt - (MAX (d, 0) + 1);
     164                  if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, MPFR_PREC (y),
     165                                                   rnd_mode)))
     166                    {
     167                      inexact = mpfr_set4 (y, t, rnd_mode, MPFR_SIGN (xt));
     168                      break;
     169                    }
     170                }
     171            }
     172  
     173          /* actualization of the precision */
     174          Nt += err;
     175          MPFR_ZIV_NEXT (loop, Nt);
     176          MPFR_GROUP_REPREC_2 (group, Nt, t, ti);
     177        }
     178      MPFR_ZIV_FREE (loop);
     179      MPFR_GROUP_CLEAR (group);
     180      MPFR_SAVE_EXPO_FREE (expo);
     181    }
     182  
     183    return mpfr_check_range (y, inexact, rnd_mode);
     184  }