(root)/
mpfr-4.2.1/
src/
log10p1.c
       1  /* mpfr_log10p1 -- Compute log10(1+x)
       2  
       3  Copyright 2001-2023 Free Software Foundation, Inc.
       4  Contributed by the AriC and Caramba projects, INRIA.
       5  
       6  This file is part of the GNU MPFR Library.
       7  
       8  The GNU MPFR Library is free software; you can redistribute it and/or modify
       9  it under the terms of the GNU Lesser General Public License as published by
      10  the Free Software Foundation; either version 3 of the License, or (at your
      11  option) any later version.
      12  
      13  The GNU MPFR Library is distributed in the hope that it will be useful, but
      14  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
      15  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
      16  License for more details.
      17  
      18  You should have received a copy of the GNU Lesser General Public License
      19  along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
      20  https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
      21  51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
      22  
      23  #define MPFR_NEED_LONGLONG_H /* needed for MPFR_INT_CEIL_LOG2 */
      24  #include "mpfr-impl.h"
      25  
      26  #define ULSIZE (sizeof (unsigned long) * CHAR_BIT)
      27  
      28  /* Return non-zero if log10(1+x) is exactly representable in infinite
      29     precision, and in such case the returned value is k such that 1+x = 10^k
      30     (the case k=0 cannot happen since we assume x<>0). */
      31  static mpfr_exp_t
      32  mpfr_log10p1_exact_p (mpfr_srcptr x)
      33  {
      34    /* log10(1+x) is exactly representable when 1+x is a power of 10,
      35       we thus simply compute 1+x with enough precision and check whether
      36       the addition is exact. This routine is called with extended exponent
      37       range, thus no need to extend it. */
      38    mpfr_t t;
      39    int inex, ret = 0;
      40  
      41    MPFR_ASSERTD(!MPFR_IS_SINGULAR(x));
      42    if (MPFR_IS_NEG(x) || MPFR_EXP(x) <= 3) /* x < 8 */
      43      return 0;
      44    mpfr_init2 (t, MPFR_PREC(x));
      45    inex = mpfr_add_ui (t, x, 1, MPFR_RNDZ);
      46    if (inex == 0) /* otherwise 1+x = 2^k, and cannot be a power of 10 */
      47      {
      48        mpfr_prec_t trailing_x = mpfr_min_prec (x);
      49        mpfr_prec_t trailing_t = mpfr_min_prec (t);
      50        if (trailing_x > trailing_t)
      51          {
      52            mpfr_prec_t k = trailing_x - trailing_t;
      53            /* if 1+x = 10^k, then t has k more trailing zeros than x */
      54            mpz_t z;
      55            mpfr_t y;
      56            mpz_init (z);
      57            mpz_ui_pow_ui (z, 5, k);
      58            mpfr_init2 (y, mpz_sizeinbase (z, 2));
      59            mpfr_set_z_2exp (y, z, k, MPFR_RNDZ);
      60            if (mpfr_equal_p (t, y))
      61              ret = k;
      62            mpfr_clear (y);
      63            mpz_clear (z);
      64          }
      65      }
      66    mpfr_clear (t);
      67    return ret;
      68  }
      69  
      70  /* Deal with the case where x is small, so that log10(1+x) ~ x/log(10).
      71     In case we can round correctly, put in y the correctly-rounded value,
      72     and return the corresponding ternary value (which cannot be zero).
      73     Otherwise return 0.
      74     This routine cannot be called only once after the first failure of Ziv's
      75     strategy, since it might be that it fails the first time, thus we need
      76     to pass the (increasing) working precision 'prec'.
      77     In case of underflow, we set y to 0, and let the caller call
      78     mpfr_underflow. */
      79  static int
      80  mpfr_log10p1_small (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode,
      81                      mpfr_prec_t prec)
      82  {
      83    mpfr_t t;
      84    mpfr_exp_t e = MPFR_GET_EXP(x);
      85    int inex;
      86  
      87    /* for |x| < 1/2, |log10(x+1) - x/log(10)| < x^2/log(10) */
      88    if (e > - (mpfr_exp_t) MPFR_PREC(y))
      89      return 0; /* the term in x^2 will contribute */
      90    /* now e = EXP(x) <= -PREC(y) <= -1 which ensures |x| < 1/2 */
      91    mpfr_init2 (t, prec);
      92    mpfr_log_ui (t, 10, MPFR_RNDN);
      93    MPFR_SET_EXP (t, MPFR_GET_EXP (t) - 2);
      94    /* we divide x by log(10)/4 which is smaller than 1 to avoid any underflow */
      95    mpfr_div (t, x, t, MPFR_RNDN);
      96    if (MPFR_GET_EXP (t) < __gmpfr_emin + 2) /* underflow case */
      97      {
      98        MPFR_SET_ZERO(y);  /* the sign does not matter */
      99        inex = 1;
     100      }
     101    else
     102      {
     103        MPFR_SET_EXP (t, MPFR_GET_EXP (t) - 2);
     104        /* t = x/log(10) * (1 + theta)^2 where |theta| < 2^-prec.
     105           For prec>=2, |(1 + theta)^2 - 1| < 3*theta thus the error is
     106           bounded by 3 ulps. The error term in x^2 is bounded by |t*x|,
     107           which is less than |t|*2^e < 2^(EXP(t)+e). */
     108        e += prec;
     109        /* now the error is bounded by 2^e+3 ulps */
     110        e = (e >= 2) ? e + 1 : 3;
     111        /* now the error is bounded by 2^e ulps */
     112        if (MPFR_CAN_ROUND (t, prec - e, MPFR_PREC(y), rnd_mode))
     113          inex = mpfr_set (y, t, rnd_mode);
     114        else
     115          inex = 0;
     116      }
     117    mpfr_clear (t);
     118    return inex;
     119  }
     120  
     121  /* The computation of log10p1 is done by log10p1(x) = log1p(x)/log(2) */
     122  int
     123  mpfr_log10p1 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
     124  {
     125    int comp, inexact, nloop;
     126    mpfr_t t, lg10;
     127    mpfr_prec_t Ny = MPFR_PREC(y), prec;
     128    MPFR_ZIV_DECL (loop);
     129    MPFR_SAVE_EXPO_DECL (expo);
     130  
     131    MPFR_LOG_FUNC
     132      (("x[%Pd]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
     133       ("y[%Pd]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y,
     134        inexact));
     135  
     136    if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
     137      return mpfr_log1p (y, x, rnd_mode); /* same result for singular cases */
     138  
     139    comp = mpfr_cmp_si (x, -1);
     140    /* log10p1(x) is undefined for x < -1 */
     141    if (MPFR_UNLIKELY(comp <= 0))
     142      {
     143        if (comp == 0)
     144          /* x=0: log10p1(-1)=-inf (divide-by-zero exception) */
     145          {
     146            MPFR_SET_INF (y);
     147            MPFR_SET_NEG (y);
     148            MPFR_SET_DIVBY0 ();
     149            MPFR_RET (0);
     150          }
     151        MPFR_SET_NAN (y);
     152        MPFR_RET_NAN;
     153      }
     154  
     155    MPFR_SAVE_EXPO_MARK (expo);
     156  
     157    prec = Ny + MPFR_INT_CEIL_LOG2 (Ny) + 6;
     158  
     159    mpfr_init2 (t, prec);
     160    mpfr_init2 (lg10, prec);
     161  
     162    MPFR_ZIV_INIT (loop, prec);
     163    for (nloop = 0; ; nloop++)
     164      {
     165        mpfr_log1p (t, x, MPFR_RNDN);
     166        mpfr_log_ui (lg10, 10, MPFR_RNDN);
     167        mpfr_div (t, t, lg10, MPFR_RNDN);
     168        /* t = log10(1+x) * (1 + theta)^3 where |theta| < 2^-prec,
     169           for prec >= 2 we have |(1 + theta)^3 - 1| < 4*theta. */
     170        if (MPFR_LIKELY (MPFR_CAN_ROUND (t, prec - 2, Ny, rnd_mode)))
     171          break;
     172  
     173        if (nloop == 0)
     174          {
     175            /* check for exact cases */
     176            mpfr_exp_t k;
     177  
     178            MPFR_LOG_MSG (("check for exact cases\n", 0));
     179            k = mpfr_log10p1_exact_p (x);
     180            if (k != 0) /* 1+x = 10^k */
     181              {
     182                inexact = mpfr_set_si (y, k, rnd_mode);
     183                goto end;
     184              }
     185          }
     186  
     187        /* inexact will be the non-zero ternary value if rounding could be
     188           done, otherwise it is set to 0. */
     189        inexact = mpfr_log10p1_small (y, x, rnd_mode, prec);
     190        if (inexact)
     191          goto end;
     192  
     193        MPFR_ZIV_NEXT (loop, prec);
     194        mpfr_set_prec (t, prec);
     195        mpfr_set_prec (lg10, prec);
     196      }
     197    inexact = mpfr_set (y, t, rnd_mode);
     198  
     199   end:
     200    MPFR_ZIV_FREE (loop);
     201    mpfr_clear (t);
     202    mpfr_clear (lg10);
     203  
     204    MPFR_SAVE_EXPO_FREE (expo);
     205    if (MPFR_IS_ZERO(y)) /* underflow from mpfr_log10p1_small */
     206      return mpfr_underflow (y, (rnd_mode == MPFR_RNDN) ? MPFR_RNDZ : rnd_mode,
     207                             1);
     208    else
     209      return mpfr_check_range (y, inexact, rnd_mode);
     210  }