(root)/
mpfr-4.2.1/
src/
acosh.c
       1  /* mpfr_acosh -- inverse hyperbolic cosine
       2  
       3  Copyright 2001-2023 Free Software Foundation, Inc.
       4  Contributed by the AriC and Caramba projects, INRIA.
       5  
       6  This file is part of the GNU MPFR Library.
       7  
       8  The GNU MPFR Library is free software; you can redistribute it and/or modify
       9  it under the terms of the GNU Lesser General Public License as published by
      10  the Free Software Foundation; either version 3 of the License, or (at your
      11  option) any later version.
      12  
      13  The GNU MPFR Library is distributed in the hope that it will be useful, but
      14  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
      15  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
      16  License for more details.
      17  
      18  You should have received a copy of the GNU Lesser General Public License
      19  along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
      20  https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
      21  51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
      22  
      23  #define MPFR_NEED_LONGLONG_H
      24  #include "mpfr-impl.h"
      25  
      26  /* The computation of acosh is done by   *
      27   *  acosh= ln(x + sqrt(x^2-1))           */
      28  
      29  int
      30  mpfr_acosh (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
      31  {
      32    MPFR_SAVE_EXPO_DECL (expo);
      33    int inexact;
      34    int comp;
      35  
      36    MPFR_LOG_FUNC (
      37      ("x[%Pd]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
      38      ("y[%Pd]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y,
      39       inexact));
      40  
      41    /* Deal with special cases */
      42    if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
      43      {
      44        /* Nan, or zero or -Inf */
      45        if (MPFR_IS_INF (x) && MPFR_IS_POS (x))
      46          {
      47            MPFR_SET_INF (y);
      48            MPFR_SET_POS (y);
      49            MPFR_RET (0);
      50          }
      51        else /* Nan, or zero or -Inf */
      52          {
      53            MPFR_SET_NAN (y);
      54            MPFR_RET_NAN;
      55          }
      56      }
      57    comp = mpfr_cmp_ui (x, 1);
      58    if (MPFR_UNLIKELY (comp < 0))
      59      {
      60        MPFR_SET_NAN (y);
      61        MPFR_RET_NAN;
      62      }
      63    else if (MPFR_UNLIKELY (comp == 0))
      64      {
      65        MPFR_SET_ZERO (y); /* acosh(1) = +0 */
      66        MPFR_SET_POS (y);
      67        MPFR_RET (0);
      68      }
      69    MPFR_SAVE_EXPO_MARK (expo);
      70  
      71    /* General case */
      72    {
      73      /* Declaration of the intermediary variables */
      74      mpfr_t t;
      75      /* Declaration of the size variables */
      76      mpfr_prec_t Ny = MPFR_PREC(y);   /* Precision of output variable */
      77      mpfr_prec_t Nt;                  /* Precision of the intermediary variable */
      78      mpfr_exp_t  err, exp_te, d;      /* Precision of error */
      79      MPFR_ZIV_DECL (loop);
      80  
      81      /* compute the precision of intermediary variable */
      82      /* the optimal number of bits : see algorithms.tex */
      83      Nt = Ny + 4 + MPFR_INT_CEIL_LOG2 (Ny);
      84  
      85      /* initialization of intermediary variables */
      86      mpfr_init2 (t, Nt);
      87  
      88      /* First computation of acosh */
      89      MPFR_ZIV_INIT (loop, Nt);
      90      for (;;)
      91        {
      92          MPFR_BLOCK_DECL (flags);
      93  
      94          /* compute acosh */
      95          MPFR_BLOCK (flags, mpfr_sqr (t, x, MPFR_RNDD));  /* x^2 */
      96          if (MPFR_OVERFLOW (flags))
      97            {
      98              mpfr_t ln2;
      99              mpfr_prec_t pln2;
     100  
     101              /* As x is very large and the precision is not too large, we
     102                 assume that we obtain the same result by evaluating ln(2x).
     103                 We need to compute ln(x) + ln(2) as 2x can overflow. TODO:
     104                 write a proof and add an MPFR_ASSERTN. */
     105              mpfr_log (t, x, MPFR_RNDN);  /* err(log) < 1/2 ulp(t) */
     106              pln2 = Nt - MPFR_PREC_MIN < MPFR_GET_EXP (t) ?
     107                MPFR_PREC_MIN : Nt - MPFR_GET_EXP (t);
     108              mpfr_init2 (ln2, pln2);
     109              mpfr_const_log2 (ln2, MPFR_RNDN);  /* err(ln2) < 1/2 ulp(t) */
     110              mpfr_add (t, t, ln2, MPFR_RNDN);  /* err <= 3/2 ulp(t) */
     111              mpfr_clear (ln2);
     112              err = 1;
     113            }
     114          else
     115            {
     116              exp_te = MPFR_GET_EXP (t);
     117              mpfr_sub_ui (t, t, 1, MPFR_RNDD);   /* x^2-1 */
     118              if (MPFR_UNLIKELY (MPFR_IS_ZERO (t)))
     119                {
     120                  /* This means that x is very close to 1: x = 1 + t with
     121                     t < 2^(-Nt). We have: acosh(x) = sqrt(2t) (1 - eps(t))
     122                     with 0 < eps(t) < t / 12. */
     123                  mpfr_sub_ui (t, x, 1, MPFR_RNDD);   /* t = x - 1 */
     124                  mpfr_mul_2ui (t, t, 1, MPFR_RNDN);  /* 2t */
     125                  mpfr_sqrt (t, t, MPFR_RNDN);        /* sqrt(2t) */
     126                  err = 1;
     127                }
     128              else
     129                {
     130                  d = exp_te - MPFR_GET_EXP (t);
     131                  mpfr_sqrt (t, t, MPFR_RNDN);        /* sqrt(x^2-1) */
     132                  mpfr_add (t, t, x, MPFR_RNDN);      /* sqrt(x^2-1)+x */
     133                  mpfr_log (t, t, MPFR_RNDN);         /* ln(sqrt(x^2-1)+x) */
     134  
     135                  /* error estimate -- see algorithms.tex */
     136                  err = 3 + MAX (1, d) - MPFR_GET_EXP (t);
     137                  /* error is bounded by 1/2 + 2^err <= 2^(max(0,1+err)) */
     138                  err = MAX (0, 1 + err);
     139                }
     140            }
     141  
     142          if (MPFR_LIKELY (MPFR_CAN_ROUND (t, Nt - err, Ny, rnd_mode)))
     143            break;
     144  
     145          /* reactualisation of the precision */
     146          MPFR_ZIV_NEXT (loop, Nt);
     147          mpfr_set_prec (t, Nt);
     148        }
     149      MPFR_ZIV_FREE (loop);
     150  
     151      inexact = mpfr_set (y, t, rnd_mode);
     152  
     153      mpfr_clear (t);
     154    }
     155  
     156    MPFR_SAVE_EXPO_FREE (expo);
     157    return mpfr_check_range (y, inexact, rnd_mode);
     158  }