(root)/
gmp-6.3.0/
mpz/
stronglucas.c
       1  /* mpz_stronglucas(n, t1, t2) -- An implementation of the strong Lucas
       2     primality test on n, using parameters as suggested by the BPSW test.
       3  
       4     THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY.  THEY'RE ALMOST
       5     CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN
       6     FUTURE GNU MP RELEASES.
       7  
       8  Copyright 2018, 2020 Free Software Foundation, Inc.
       9  
      10  Contributed by Marco Bodrato.
      11  
      12  This file is part of the GNU MP Library.
      13  
      14  The GNU MP Library is free software; you can redistribute it and/or modify
      15  it under the terms of either:
      16  
      17    * the GNU Lesser General Public License as published by the Free
      18      Software Foundation; either version 3 of the License, or (at your
      19      option) any later version.
      20  
      21  or
      22  
      23    * the GNU General Public License as published by the Free Software
      24      Foundation; either version 2 of the License, or (at your option) any
      25      later version.
      26  
      27  or both in parallel, as here.
      28  
      29  The GNU MP Library is distributed in the hope that it will be useful, but
      30  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
      31  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
      32  for more details.
      33  
      34  You should have received copies of the GNU General Public License and the
      35  GNU Lesser General Public License along with the GNU MP Library.  If not,
      36  see https://www.gnu.org/licenses/.  */
      37  
      38  #include "gmp-impl.h"
      39  #include "longlong.h"
      40  
      41  /* Returns an approximation of the sqare root of x.
      42   * It gives:
      43   *   limb_apprsqrt (x) ^ 2 <= x < (limb_apprsqrt (x)+1) ^ 2
      44   * or
      45   *   x <= limb_apprsqrt (x) ^ 2 <= x * 9/8
      46   */
      47  static mp_limb_t
      48  limb_apprsqrt (mp_limb_t x)
      49  {
      50    int s;
      51  
      52    ASSERT (x > 2);
      53    count_leading_zeros (s, x);
      54    s = (GMP_LIMB_BITS - s) >> 1;
      55    return ((CNST_LIMB(1) << (s - 1)) + (x >> 1 >> s));
      56  }
      57  
      58  static int
      59  mpz_oddjacobi_ui (mpz_t b, mp_limb_t a)
      60  {
      61    mp_limb_t  b_rem;
      62    int        result_bit1;
      63  
      64    ASSERT (a & 1);
      65    ASSERT (a > 1);
      66    ASSERT (SIZ (b) > 0);
      67    ASSERT ((*PTR (b) & 1) == 1);
      68  
      69    result_bit1 = 0;
      70    JACOBI_MOD_OR_MODEXACT_1_ODD (result_bit1, b_rem, PTR (b), SIZ (b), a);
      71    if (UNLIKELY (b_rem == 0))
      72      return 0;
      73    else
      74      return mpn_jacobi_base (b_rem, a, result_bit1);
      75  }
      76  
      77  
      78  /* Performs strong Lucas' test on x, with parameters suggested */
      79  /* for the BPSW test. Qk and V are passed to recycle variables. */
      80  /* Requires GCD (x,6) = 1.*/
      81  int
      82  mpz_stronglucas (mpz_srcptr x, mpz_ptr V, mpz_ptr Qk)
      83  {
      84    mp_bitcnt_t b0;
      85    mpz_t n;
      86    mp_limb_t D; /* The absolute value is stored. */
      87    mp_limb_t g;
      88    long Q;
      89    mpz_t T1, T2;
      90  
      91    /* Test on the absolute value. */
      92    mpz_roinit_n (n, PTR (x), ABSIZ (x));
      93  
      94    ASSERT (mpz_odd_p (n));
      95    /* ASSERT (mpz_gcd_ui (NULL, n, 6) == 1);	*/
      96  #if GMP_NUMB_BITS % 16 == 0
      97    /* (2^12 - 1) | (2^{GMP_NUMB_BITS*3/4} - 1)	*/
      98    g = mpn_mod_34lsub1 (PTR (n), SIZ (n));
      99    /* (2^12 - 1) = 3^2 * 5 * 7 * 13		*/
     100    ASSERT (g % 3 != 0 && g % 5 != 0 && g % 7 != 0);
     101    if ((g % 5 & 2) != 0)
     102      /* (5/n) = -1, iff n = 2 or 3 (mod 5)	*/
     103      /* D = 5; Q = -1 */
     104      return mpn_strongfibo (PTR (n), SIZ (n), PTR (V));
     105    else if (! POW2_P (g % 7))
     106      /* (-7/n) = -1, iff n = 3,5 or 6 (mod 7)	*/
     107      D = 7; /* Q = 2 */
     108      /* (9/n) = -1, never: 9 = 3^2	*/
     109    else if (mpz_oddjacobi_ui (n, 11) == -1)
     110      /* (-11/n) = (n/11)	*/
     111      D = 11; /* Q = 3 */
     112    else if ((((g % 13 - (g % 13 >> 3)) & 7) > 4) ||
     113  	   (((g % 13 - (g % 13 >> 3)) & 7) == 2))
     114      /* (13/n) = -1, iff n = 2,5,6,7,8 or 11 (mod 13)	*/
     115      D = 13; /* Q = -3 */
     116    else if (g % 3 == 2)
     117      /* (-15/n) = (n/15) = (n/5)*(n/3)	*/
     118      /* Here, (n/5) = 1, and		*/
     119      /* (n/3) = -1, iff n = 2 (mod 3)	*/
     120      D = 15; /* Q = 4 */
     121  #if GMP_NUMB_BITS % 32 == 0
     122    /* (2^24 - 1) | (2^{GMP_NUMB_BITS*3/4} - 1)	*/
     123    /* (2^24 - 1) = (2^12 - 1) * 17 * 241		*/
     124    else if (! POW2_P (g % 17) && ! POW2_P (17 - g % 17))
     125      /* (17/n) = -1, iff n != +-1,+-2,+-4,+-8 (mod 17)	*/
     126      D = 17; /* Q = -4 */
     127  #endif
     128  #else
     129    if (mpz_oddjacobi_ui (n, 5) == -1)
     130      return mpn_strongfibo (PTR (n), SIZ (n), PTR (V));
     131  #endif
     132    else
     133    {
     134      mp_limb_t maxD;
     135      int jac;
     136  
     137      /* n is odd, to possibly be a square, n % 8 = 1 is needed. */
     138      if (((*PTR (n) & 6) == 0) && UNLIKELY (mpz_perfect_square_p (n)))
     139        return 0; /* A square is composite. */
     140  
     141      /* Check Ds up to square root (in case, n is prime)
     142         or avoid overflows */
     143      if (SIZ (n) == 1)
     144        maxD = limb_apprsqrt (* PTR (n));
     145      else if (BITS_PER_ULONG >= GMP_NUMB_BITS && SIZ (n) == 2)
     146        mpn_sqrtrem (&maxD, (mp_ptr) NULL, PTR (n), 2);
     147      else
     148        maxD = GMP_NUMB_MAX;
     149      maxD = MIN (maxD, ULONG_MAX);
     150  
     151      unsigned Ddiff = 2;
     152  #if GMP_NUMB_BITS % 16 == 0
     153      const unsigned D2 = 6;
     154  #if GMP_NUMB_BITS % 32 == 0
     155      D = 19;
     156      Ddiff = 4;
     157  #else
     158      D = 17;
     159  #endif
     160  #else
     161      const unsigned D2 = 4;
     162      D = 7;
     163  #endif
     164  
     165      /* Search a D such that (D/n) = -1 in the sequence 5,-7,9,-11,..	*/
     166      /* For those Ds we have (D/n) = (n/|D|)	*/
     167      /* FIXME: Should we loop only on prime Ds?	*/
     168      /* The only interesting composite D is 15, because 3 is not tested.	*/
     169      for (;;)
     170        {
     171  	jac = mpz_oddjacobi_ui (n, D);
     172  	if (jac != 1)
     173  	  break;
     174  	if (UNLIKELY (D >= maxD))
     175  	  return 1;
     176  	D += Ddiff;
     177  	Ddiff = D2 - Ddiff;
     178        }
     179  
     180      if (UNLIKELY (jac == 0))
     181        return 0;
     182    }
     183  
     184    /* D= P^2 - 4Q; P = 1; Q = (1-D)/4 */
     185    Q = (D & 2) ? (D >> 2) + 1 : -(long) (D >> 2);
     186    /* ASSERT (mpz_si_kronecker ((D & 2) ? NEG_CAST (long, D) : D, n) == -1); */
     187  
     188    /* n-(D/n) = n+1 = d*2^{b0}, with d = (n>>b0) | 1 */
     189    b0 = mpz_scan0 (n, 0);
     190  
     191    mpz_init (T1);
     192    mpz_init (T2);
     193  
     194    /* If Ud != 0 && Vd != 0 */
     195    if (mpz_lucas_mod (V, Qk, Q, b0, n, T1, T2) == 0)
     196      if (LIKELY (--b0 != 0))
     197        for (;;)
     198  	{
     199  	  /* V_{2k} <- V_k ^ 2 - 2Q^k */
     200  	  mpz_mul (T2, V, V);
     201  	  mpz_submul_ui (T2, Qk, 2);
     202  	  mpz_tdiv_r (V, T2, n);
     203  	  if (SIZ (V) == 0 || UNLIKELY (--b0 == 0))
     204  	    break;
     205  	  /* Q^{2k} = (Q^k)^2 */
     206  	  mpz_mul (T2, Qk, Qk);
     207  	  mpz_tdiv_r (Qk, T2, n);
     208  	}
     209  
     210    mpz_clear (T1);
     211    mpz_clear (T2);
     212  
     213    return (b0 != 0);
     214  }