(root)/
gmp-6.3.0/
mpz/
lucmod.c
       1  /* mpz_lucas_mod -- Helper function for the strong Lucas
       2     primality test.
       3  
       4     THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY.  THEY'RE ALMOST
       5     CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN
       6     FUTURE GNU MP RELEASES.
       7  
       8  Copyright 2018 Free Software Foundation, Inc.
       9  
      10  Contributed by Marco Bodrato.
      11  
      12  This file is part of the GNU MP Library.
      13  
      14  The GNU MP Library is free software; you can redistribute it and/or modify
      15  it under the terms of either:
      16  
      17    * the GNU Lesser General Public License as published by the Free
      18      Software Foundation; either version 3 of the License, or (at your
      19      option) any later version.
      20  
      21  or
      22  
      23    * the GNU General Public License as published by the Free Software
      24      Foundation; either version 2 of the License, or (at your option) any
      25      later version.
      26  
      27  or both in parallel, as here.
      28  
      29  The GNU MP Library is distributed in the hope that it will be useful, but
      30  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
      31  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
      32  for more details.
      33  
      34  You should have received copies of the GNU General Public License and the
      35  GNU Lesser General Public License along with the GNU MP Library.  If not,
      36  see https://www.gnu.org/licenses/.  */
      37  
      38  #include "gmp-impl.h"
      39  
      40  /* Computes V_{k+1}, Q^{k+1} (mod n) for the Lucas' sequence	*/
      41  /* with P=1, Q=Q; k = n>>b0.	*/
      42  /* Requires n > 4; b0 > 0; -2*Q must not overflow a long.	*/
      43  /* If U_{k+1}==0 (mod n) or V_{k+1}==0 (mod n), it returns 1,	*/
      44  /* otherwise it returns 0 and sets V=V_{k+1} and Qk=Q^{k+1}.	*/
      45  /* V will never grow beyond SIZ(n), Qk not beyond 2*SIZ(n).	*/
      46  int
      47  mpz_lucas_mod (mpz_ptr V, mpz_ptr Qk, long Q,
      48  	       mp_bitcnt_t b0, mpz_srcptr n, mpz_ptr T1, mpz_ptr T2)
      49  {
      50    mp_bitcnt_t bs;
      51    int res;
      52  
      53    ASSERT (b0 > 0);
      54    ASSERT (SIZ (n) > 1 || SIZ (n) > 0 && PTR (n) [0] > 4);
      55  
      56    mpz_set_ui (V, 1); /* U1 = 1 */
      57    bs = mpz_sizeinbase (n, 2) - 2;
      58    if (UNLIKELY (bs < b0))
      59      {
      60        /* n = 2^b0 - 1, should we use Lucas-Lehmer instead? */
      61        ASSERT (bs == b0 - 2);
      62        mpz_set_si (Qk, Q);
      63        return 0;
      64      }
      65    mpz_set_ui (Qk, 1); /* U2 = 1 */
      66  
      67    do
      68      {
      69        /* We use the iteration suggested in "Elementary Number Theory"	*/
      70        /* by Peter Hackman (November 1, 2009), section "L.XVII Scalar	*/
      71        /* Formulas", from http://hackmat.se/kurser/TATM54/booktot.pdf	*/
      72        /* U_{2k} = 2*U_{k+1}*U_k - P*U_k^2	*/
      73        /* U_{2k+1} = U_{k+1}^2  - Q*U_k^2	*/
      74        /* U_{2k+2} = P*U_{k+1}^2 - 2*Q*U_{k+1}*U_k	*/
      75        /* We note that U_{2k+2} = P*U_{2k+1} - Q*U_{2k}	*/
      76        /* The formulas are specialized for P=1, and only squares:	*/
      77        /* U_{2k}   = U_{k+1}^2 - |U_{k+1} - U_k|^2	*/
      78        /* U_{2k+1} = U_{k+1}^2 - Q*U_k^2		*/
      79        /* U_{2k+2} = U_{2k+1}  - Q*U_{2k}	*/
      80        mpz_mul (T1, Qk, Qk);	/* U_{k+1}^2		*/
      81        mpz_sub (Qk, V, Qk);	/* |U_{k+1} - U_k|	*/
      82        mpz_mul (T2, Qk, Qk);	/* |U_{k+1} - U_k|^2	*/
      83        mpz_mul (Qk, V, V);	/* U_k^2		*/
      84        mpz_sub (T2, T1, T2);	/* U_{k+1}^2 - (U_{k+1} - U_k)^2	*/
      85        if (Q > 0)		/* U_{k+1}^2 - Q U_k^2 = U_{2k+1}	*/
      86  	mpz_submul_ui (T1, Qk, Q);
      87        else
      88  	mpz_addmul_ui (T1, Qk, NEG_CAST (unsigned long, Q));
      89  
      90        /* A step k->k+1 is performed if the bit in $n$ is 1	*/
      91        if (mpz_tstbit (n, bs))
      92  	{
      93  	  /* U_{2k+2} = U_{2k+1} - Q*U_{2k}	*/
      94  	  mpz_mul_si (T2, T2, Q);
      95  	  mpz_sub (T2, T1, T2);
      96  	  mpz_swap (T1, T2);
      97  	}
      98        mpz_tdiv_r (Qk, T1, n);
      99        mpz_tdiv_r (V, T2, n);
     100      } while (--bs >= b0);
     101  
     102    res = SIZ (Qk) == 0;
     103    if (!res) {
     104      mpz_mul_si (T1, V, -2*Q);
     105      mpz_add (T1, Qk, T1);	/* V_k = U_k - 2Q*U_{k-1} */
     106      mpz_tdiv_r (V, T1, n);
     107      res = SIZ (V) == 0;
     108      if (!res && b0 > 1) {
     109        /* V_k and Q^k will be needed for further check, compute them.	*/
     110        /* FIXME: Here we compute V_k^2 and store V_k, but the former	*/
     111        /* will be recomputed by the calling function, shoul we store	*/
     112        /* that instead?							*/
     113        mpz_mul (T2, T1, T1);	/* V_k^2 */
     114        mpz_mul (T1, Qk, Qk);	/* P^2 U_k^2 = U_k^2 */
     115        mpz_sub (T2, T2, T1);
     116        ASSERT (SIZ (T2) == 0 || PTR (T2) [0] % 4 == 0);
     117        mpz_tdiv_q_2exp (T2, T2, 2);	/* (V_k^2 - P^2 U_k^2) / 4 */
     118        if (Q > 0)		/* (V_k^2 - (P^2 -4Q) U_k^2) / 4 = Q^k */
     119  	mpz_addmul_ui (T2, T1, Q);
     120        else
     121  	mpz_submul_ui (T2, T1, NEG_CAST (unsigned long, Q));
     122        mpz_tdiv_r (Qk, T2, n);
     123      }
     124    }
     125  
     126    return res;
     127  }