(root)/
gmp-6.3.0/
mpn/
generic/
toom_eval_pm2exp.c
       1  /* mpn_toom_eval_pm2exp -- Evaluate a polynomial in +2^k and -2^k
       2  
       3     Contributed to the GNU project by Niels Möller
       4  
       5     THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE.  IT IS ONLY
       6     SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
       7     GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
       8  
       9  Copyright 2009 Free Software Foundation, Inc.
      10  
      11  This file is part of the GNU MP Library.
      12  
      13  The GNU MP Library is free software; you can redistribute it and/or modify
      14  it under the terms of either:
      15  
      16    * the GNU Lesser General Public License as published by the Free
      17      Software Foundation; either version 3 of the License, or (at your
      18      option) any later version.
      19  
      20  or
      21  
      22    * the GNU General Public License as published by the Free Software
      23      Foundation; either version 2 of the License, or (at your option) any
      24      later version.
      25  
      26  or both in parallel, as here.
      27  
      28  The GNU MP Library is distributed in the hope that it will be useful, but
      29  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
      30  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
      31  for more details.
      32  
      33  You should have received copies of the GNU General Public License and the
      34  GNU Lesser General Public License along with the GNU MP Library.  If not,
      35  see https://www.gnu.org/licenses/.  */
      36  
      37  
      38  #include "gmp-impl.h"
      39  
      40  /* Evaluates a polynomial of degree k > 2, in the points +2^shift and -2^shift. */
      41  int
      42  mpn_toom_eval_pm2exp (mp_ptr xp2, mp_ptr xm2, unsigned k,
      43  		      mp_srcptr xp, mp_size_t n, mp_size_t hn, unsigned shift,
      44  		      mp_ptr tp)
      45  {
      46    unsigned i;
      47    int neg;
      48  #if HAVE_NATIVE_mpn_addlsh_n
      49    mp_limb_t cy;
      50  #endif
      51  
      52    ASSERT (k >= 3);
      53    ASSERT (shift*k < GMP_NUMB_BITS);
      54  
      55    ASSERT (hn > 0);
      56    ASSERT (hn <= n);
      57  
      58    /* The degree k is also the number of full-size coefficients, so
      59     * that last coefficient, of size hn, starts at xp + k*n. */
      60  
      61  #if HAVE_NATIVE_mpn_addlsh_n
      62    xp2[n] = mpn_addlsh_n (xp2, xp, xp + 2*n, n, 2*shift);
      63    for (i = 4; i < k; i += 2)
      64      xp2[n] += mpn_addlsh_n (xp2, xp2, xp + i*n, n, i*shift);
      65  
      66    tp[n] = mpn_lshift (tp, xp+n, n, shift);
      67    for (i = 3; i < k; i+= 2)
      68      tp[n] += mpn_addlsh_n (tp, tp, xp+i*n, n, i*shift);
      69  
      70    if (k & 1)
      71      {
      72        cy = mpn_addlsh_n (tp, tp, xp+k*n, hn, k*shift);
      73        MPN_INCR_U (tp + hn, n+1 - hn, cy);
      74      }
      75    else
      76      {
      77        cy = mpn_addlsh_n (xp2, xp2, xp+k*n, hn, k*shift);
      78        MPN_INCR_U (xp2 + hn, n+1 - hn, cy);
      79      }
      80  
      81  #else /* !HAVE_NATIVE_mpn_addlsh_n */
      82    xp2[n] = mpn_lshift (tp, xp+2*n, n, 2*shift);
      83    xp2[n] += mpn_add_n (xp2, xp, tp, n);
      84    for (i = 4; i < k; i += 2)
      85      {
      86        xp2[n] += mpn_lshift (tp, xp + i*n, n, i*shift);
      87        xp2[n] += mpn_add_n (xp2, xp2, tp, n);
      88      }
      89  
      90    tp[n] = mpn_lshift (tp, xp+n, n, shift);
      91    for (i = 3; i < k; i+= 2)
      92      {
      93        tp[n] += mpn_lshift (xm2, xp + i*n, n, i*shift);
      94        tp[n] += mpn_add_n (tp, tp, xm2, n);
      95      }
      96  
      97    xm2[hn] = mpn_lshift (xm2, xp + k*n, hn, k*shift);
      98    if (k & 1)
      99      mpn_add (tp, tp, n+1, xm2, hn+1);
     100    else
     101      mpn_add (xp2, xp2, n+1, xm2, hn+1);
     102  #endif /* !HAVE_NATIVE_mpn_addlsh_n */
     103  
     104    neg = (mpn_cmp (xp2, tp, n + 1) < 0) ? ~0 : 0;
     105  
     106  #if HAVE_NATIVE_mpn_add_n_sub_n
     107    if (neg)
     108      mpn_add_n_sub_n (xp2, xm2, tp, xp2, n + 1);
     109    else
     110      mpn_add_n_sub_n (xp2, xm2, xp2, tp, n + 1);
     111  #else /* !HAVE_NATIVE_mpn_add_n_sub_n */
     112    if (neg)
     113      mpn_sub_n (xm2, tp, xp2, n + 1);
     114    else
     115      mpn_sub_n (xm2, xp2, tp, n + 1);
     116  
     117    mpn_add_n (xp2, xp2, tp, n + 1);
     118  #endif /* !HAVE_NATIVE_mpn_add_n_sub_n */
     119  
     120    /* FIXME: the following asserts are useless if (k+1)*shift >= GMP_LIMB_BITS */
     121    ASSERT ((k+1)*shift >= GMP_LIMB_BITS ||
     122  	  xp2[n] < ((CNST_LIMB(1)<<((k+1)*shift))-1)/((CNST_LIMB(1)<<shift)-1));
     123    ASSERT ((k+2)*shift >= GMP_LIMB_BITS ||
     124  	  xm2[n] < ((CNST_LIMB(1)<<((k+2)*shift))-((k&1)?(CNST_LIMB(1)<<shift):1))/((CNST_LIMB(1)<<(2*shift))-1));
     125  
     126    return neg;
     127  }