(root)/
gmp-6.3.0/
mpn/
generic/
toom_eval_pm2.c
       1  /* mpn_toom_eval_pm2 -- Evaluate a polynomial in +2 and -2
       2  
       3     Contributed to the GNU project by Niels Möller and Marco Bodrato
       4  
       5     THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE.  IT IS ONLY
       6     SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
       7     GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
       8  
       9  Copyright 2009 Free Software Foundation, Inc.
      10  
      11  This file is part of the GNU MP Library.
      12  
      13  The GNU MP Library is free software; you can redistribute it and/or modify
      14  it under the terms of either:
      15  
      16    * the GNU Lesser General Public License as published by the Free
      17      Software Foundation; either version 3 of the License, or (at your
      18      option) any later version.
      19  
      20  or
      21  
      22    * the GNU General Public License as published by the Free Software
      23      Foundation; either version 2 of the License, or (at your option) any
      24      later version.
      25  
      26  or both in parallel, as here.
      27  
      28  The GNU MP Library is distributed in the hope that it will be useful, but
      29  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
      30  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
      31  for more details.
      32  
      33  You should have received copies of the GNU General Public License and the
      34  GNU Lesser General Public License along with the GNU MP Library.  If not,
      35  see https://www.gnu.org/licenses/.  */
      36  
      37  #include "gmp-impl.h"
      38  
      39  /* DO_addlsh2(d,a,b,n,cy) computes cy,{d,n} <- {a,n} + 4*(cy,{b,n}), it
      40     can be used as DO_addlsh2(d,a,d,n,d[n]), for accumulation on {d,n+1}. */
      41  #if HAVE_NATIVE_mpn_addlsh2_n
      42  #define DO_addlsh2(d, a, b, n, cy)	\
      43  do {					\
      44    (cy) <<= 2;				\
      45    (cy) += mpn_addlsh2_n(d, a, b, n);	\
      46  } while (0)
      47  #else
      48  #if HAVE_NATIVE_mpn_addlsh_n
      49  #define DO_addlsh2(d, a, b, n, cy)	\
      50  do {					\
      51    (cy) <<= 2;				\
      52    (cy) += mpn_addlsh_n(d, a, b, n, 2);	\
      53  } while (0)
      54  #else
      55  /* The following is not a general substitute for addlsh2.
      56     It is correct if d == b, but it is not if d == a.  */
      57  #define DO_addlsh2(d, a, b, n, cy)	\
      58  do {					\
      59    (cy) <<= 2;				\
      60    (cy) += mpn_lshift(d, b, n, 2);	\
      61    (cy) += mpn_add_n(d, d, a, n);	\
      62  } while (0)
      63  #endif
      64  #endif
      65  
      66  /* Evaluates a polynomial of degree 2 < k < GMP_NUMB_BITS, in the
      67     points +2 and -2. */
      68  int
      69  mpn_toom_eval_pm2 (mp_ptr xp2, mp_ptr xm2, unsigned k,
      70  		   mp_srcptr xp, mp_size_t n, mp_size_t hn, mp_ptr tp)
      71  {
      72    int i;
      73    int neg;
      74    mp_limb_t cy;
      75  
      76    ASSERT (k >= 3);
      77    ASSERT (k < GMP_NUMB_BITS);
      78  
      79    ASSERT (hn > 0);
      80    ASSERT (hn <= n);
      81  
      82    /* The degree k is also the number of full-size coefficients, so
      83     * that last coefficient, of size hn, starts at xp + k*n. */
      84  
      85    cy = 0;
      86    DO_addlsh2 (xp2, xp + (k-2) * n, xp + k * n, hn, cy);
      87    if (hn != n)
      88      cy = mpn_add_1 (xp2 + hn, xp + (k-2) * n + hn, n - hn, cy);
      89    for (i = k - 4; i >= 0; i -= 2)
      90      DO_addlsh2 (xp2, xp + i * n, xp2, n, cy);
      91    xp2[n] = cy;
      92  
      93    k--;
      94  
      95    cy = 0;
      96    DO_addlsh2 (tp, xp + (k-2) * n, xp + k * n, n, cy);
      97    for (i = k - 4; i >= 0; i -= 2)
      98      DO_addlsh2 (tp, xp + i * n, tp, n, cy);
      99    tp[n] = cy;
     100  
     101    if (k & 1)
     102      ASSERT_NOCARRY(mpn_lshift (tp , tp , n + 1, 1));
     103    else
     104      ASSERT_NOCARRY(mpn_lshift (xp2, xp2, n + 1, 1));
     105  
     106    neg = (mpn_cmp (xp2, tp, n + 1) < 0) ? ~0 : 0;
     107  
     108  #if HAVE_NATIVE_mpn_add_n_sub_n
     109    if (neg)
     110      mpn_add_n_sub_n (xp2, xm2, tp, xp2, n + 1);
     111    else
     112      mpn_add_n_sub_n (xp2, xm2, xp2, tp, n + 1);
     113  #else /* !HAVE_NATIVE_mpn_add_n_sub_n */
     114    if (neg)
     115      mpn_sub_n (xm2, tp, xp2, n + 1);
     116    else
     117      mpn_sub_n (xm2, xp2, tp, n + 1);
     118  
     119    mpn_add_n (xp2, xp2, tp, n + 1);
     120  #endif /* !HAVE_NATIVE_mpn_add_n_sub_n */
     121  
     122    ASSERT (xp2[n] < (1<<(k+2))-1);
     123    ASSERT (xm2[n] < ((1<<(k+3))-1 - (1^k&1))/3);
     124  
     125    neg ^= ((k & 1) - 1);
     126  
     127    return neg;
     128  }
     129  
     130  #undef DO_addlsh2