(root)/
gmp-6.3.0/
mpn/
generic/
invertappr.c
       1  /* mpn_invertappr and helper functions.  Compute I such that
       2     floor((B^{2n}-1)/U - 1 <= I + B^n <= floor((B^{2n}-1)/U.
       3  
       4     Contributed to the GNU project by Marco Bodrato.
       5  
       6     The algorithm used here was inspired by ApproximateReciprocal from "Modern
       7     Computer Arithmetic", by Richard P. Brent and Paul Zimmermann.  Special
       8     thanks to Paul Zimmermann for his very valuable suggestions on all the
       9     theoretical aspects during the work on this code.
      10  
      11     THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY
      12     SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
      13     GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GMP RELEASE.
      14  
      15  Copyright (C) 2007, 2009, 2010, 2012, 2015, 2016 Free Software
      16  Foundation, Inc.
      17  
      18  This file is part of the GNU MP Library.
      19  
      20  The GNU MP Library is free software; you can redistribute it and/or modify
      21  it under the terms of either:
      22  
      23    * the GNU Lesser General Public License as published by the Free
      24      Software Foundation; either version 3 of the License, or (at your
      25      option) any later version.
      26  
      27  or
      28  
      29    * the GNU General Public License as published by the Free Software
      30      Foundation; either version 2 of the License, or (at your option) any
      31      later version.
      32  
      33  or both in parallel, as here.
      34  
      35  The GNU MP Library is distributed in the hope that it will be useful, but
      36  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
      37  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
      38  for more details.
      39  
      40  You should have received copies of the GNU General Public License and the
      41  GNU Lesser General Public License along with the GNU MP Library.  If not,
      42  see https://www.gnu.org/licenses/.  */
      43  
      44  #include "gmp-impl.h"
      45  #include "longlong.h"
      46  
      47  /* FIXME: The iterative version splits the operand in two slightly unbalanced
      48     parts, the use of log_2 (or counting the bits) underestimate the maximum
      49     number of iterations.  */
      50  
      51  #if TUNE_PROGRAM_BUILD
      52  #define NPOWS \
      53   ((sizeof(mp_size_t) > 6 ? 48 : 8*sizeof(mp_size_t)))
      54  #define MAYBE_dcpi1_divappr   1
      55  #else
      56  #define NPOWS \
      57   ((sizeof(mp_size_t) > 6 ? 48 : 8*sizeof(mp_size_t)) - LOG2C (INV_NEWTON_THRESHOLD))
      58  #define MAYBE_dcpi1_divappr \
      59    (INV_NEWTON_THRESHOLD < DC_DIVAPPR_Q_THRESHOLD)
      60  #if (INV_NEWTON_THRESHOLD > INV_MULMOD_BNM1_THRESHOLD) && \
      61      (INV_APPR_THRESHOLD > INV_MULMOD_BNM1_THRESHOLD)
      62  #undef  INV_MULMOD_BNM1_THRESHOLD
      63  #define INV_MULMOD_BNM1_THRESHOLD 0 /* always when Newton */
      64  #endif
      65  #endif
      66  
      67  /* All the three functions mpn{,_bc,_ni}_invertappr (ip, dp, n, scratch), take
      68     the strictly normalised value {dp,n} (i.e., most significant bit must be set)
      69     as an input, and compute {ip,n}: the approximate reciprocal of {dp,n}.
      70  
      71     Let e = mpn*_invertappr (ip, dp, n, scratch) be the returned value; the
      72     following conditions are satisfied by the output:
      73       0 <= e <= 1;
      74       {dp,n}*(B^n+{ip,n}) < B^{2n} <= {dp,n}*(B^n+{ip,n}+1+e) .
      75     I.e. e=0 means that the result {ip,n} equals the one given by mpn_invert.
      76  	e=1 means that the result _may_ be one less than expected.
      77  
      78     The _bc version returns e=1 most of the time.
      79     The _ni version should return e=0 most of the time; only about 1% of
      80     possible random input should give e=1.
      81  
      82     When the strict result is needed, i.e., e=0 in the relation above:
      83       {dp,n}*(B^n+{ip,n}) < B^{2n} <= {dp,n}*(B^n+{ip,n}+1) ;
      84     the function mpn_invert (ip, dp, n, scratch) should be used instead.  */
      85  
      86  /* Maximum scratch needed by this branch (at xp): 2*n */
      87  static mp_limb_t
      88  mpn_bc_invertappr (mp_ptr ip, mp_srcptr dp, mp_size_t n, mp_ptr xp)
      89  {
      90    ASSERT (n > 0);
      91    ASSERT (dp[n-1] & GMP_NUMB_HIGHBIT);
      92    ASSERT (! MPN_OVERLAP_P (ip, n, dp, n));
      93    ASSERT (! MPN_OVERLAP_P (ip, n, xp, mpn_invertappr_itch(n)));
      94    ASSERT (! MPN_OVERLAP_P (dp, n, xp, mpn_invertappr_itch(n)));
      95  
      96    /* Compute a base value of r limbs. */
      97    if (n == 1)
      98      invert_limb (*ip, *dp);
      99    else {
     100      /* n > 1 here */
     101      MPN_FILL (xp, n, GMP_NUMB_MAX);
     102      mpn_com (xp + n, dp, n);
     103  
     104      /* Now xp contains B^2n - {dp,n}*B^n - 1 */
     105  
     106      /* FIXME: if mpn_*pi1_divappr_q handles n==2, use it! */
     107      if (n == 2) {
     108        mpn_divrem_2 (ip, 0, xp, 4, dp);
     109      } else {
     110        gmp_pi1_t inv;
     111        invert_pi1 (inv, dp[n-1], dp[n-2]);
     112        if (! MAYBE_dcpi1_divappr
     113  	  || BELOW_THRESHOLD (n, DC_DIVAPPR_Q_THRESHOLD))
     114  	mpn_sbpi1_divappr_q (ip, xp, 2 * n, dp, n, inv.inv32);
     115        else
     116  	mpn_dcpi1_divappr_q (ip, xp, 2 * n, dp, n, &inv);
     117        MPN_DECR_U(ip, n, CNST_LIMB (1));
     118        return 1;
     119      }
     120    }
     121    return 0;
     122  }
     123  
     124  /* mpn_ni_invertappr: computes the approximate reciprocal using Newton's
     125     iterations (at least one).
     126  
     127     Inspired by Algorithm "ApproximateReciprocal", published in "Modern Computer
     128     Arithmetic" by Richard P. Brent and Paul Zimmermann, algorithm 3.5, page 121
     129     in version 0.4 of the book.
     130  
     131     Some adaptations were introduced, to allow product mod B^m-1 and return the
     132     value e.
     133  
     134     We introduced a correction in such a way that "the value of
     135     B^{n+h}-T computed at step 8 cannot exceed B^n-1" (the book reads
     136     "2B^n-1").
     137  
     138     Maximum scratch needed by this branch <= 2*n, but have to fit 3*rn
     139     in the scratch, i.e. 3*rn <= 2*n: we require n>4.
     140  
     141     We use a wrapped product modulo B^m-1.  NOTE: is there any normalisation
     142     problem for the [0] class?  It shouldn't: we compute 2*|A*X_h - B^{n+h}| <
     143     B^m-1.  We may get [0] if and only if we get AX_h = B^{n+h}.  This can
     144     happen only if A=B^{n}/2, but this implies X_h = B^{h}*2-1 i.e., AX_h =
     145     B^{n+h} - A, then we get into the "negative" branch, where X_h is not
     146     incremented (because A < B^n).
     147  
     148     FIXME: the scratch for mulmod_bnm1 does not currently fit in the scratch, it
     149     is allocated apart.
     150   */
     151  
     152  mp_limb_t
     153  mpn_ni_invertappr (mp_ptr ip, mp_srcptr dp, mp_size_t n, mp_ptr scratch)
     154  {
     155    mp_limb_t cy;
     156    mp_size_t rn, mn;
     157    mp_size_t sizes[NPOWS], *sizp;
     158    mp_ptr tp;
     159    TMP_DECL;
     160  #define xp scratch
     161  
     162    ASSERT (n > 4);
     163    ASSERT (dp[n-1] & GMP_NUMB_HIGHBIT);
     164    ASSERT (! MPN_OVERLAP_P (ip, n, dp, n));
     165    ASSERT (! MPN_OVERLAP_P (ip, n, scratch, mpn_invertappr_itch(n)));
     166    ASSERT (! MPN_OVERLAP_P (dp, n, scratch, mpn_invertappr_itch(n)));
     167  
     168    /* Compute the computation precisions from highest to lowest, leaving the
     169       base case size in 'rn'.  */
     170    sizp = sizes;
     171    rn = n;
     172    do {
     173      *sizp = rn;
     174      rn = (rn >> 1) + 1;
     175      ++sizp;
     176    } while (ABOVE_THRESHOLD (rn, INV_NEWTON_THRESHOLD));
     177  
     178    /* We search the inverse of 0.{dp,n}, we compute it as 1.{ip,n} */
     179    dp += n;
     180    ip += n;
     181  
     182    /* Compute a base value of rn limbs. */
     183    mpn_bc_invertappr (ip - rn, dp - rn, rn, scratch);
     184  
     185    TMP_MARK;
     186  
     187    if (ABOVE_THRESHOLD (n, INV_MULMOD_BNM1_THRESHOLD))
     188      {
     189        mn = mpn_mulmod_bnm1_next_size (n + 1);
     190        tp = TMP_ALLOC_LIMBS (mpn_mulmod_bnm1_itch (mn, n, (n >> 1) + 1));
     191      }
     192    /* Use Newton's iterations to get the desired precision.*/
     193  
     194    while (1) {
     195      n = *--sizp;
     196      /*
     197        v    n  v
     198        +----+--+
     199        ^ rn ^
     200      */
     201  
     202      /* Compute i_jd . */
     203      if (BELOW_THRESHOLD (n, INV_MULMOD_BNM1_THRESHOLD)
     204  	|| ((mn = mpn_mulmod_bnm1_next_size (n + 1)) > (n + rn))) {
     205        /* FIXME: We do only need {xp,n+1}*/
     206        mpn_mul (xp, dp - n, n, ip - rn, rn);
     207        mpn_add_n (xp + rn, xp + rn, dp - n, n - rn + 1);
     208        cy = CNST_LIMB(1); /* Remember we truncated, Mod B^(n+1) */
     209        /* We computed (truncated) {xp,n+1} <- 1.{ip,rn} * 0.{dp,n} */
     210      } else { /* Use B^mn-1 wraparound */
     211        mpn_mulmod_bnm1 (xp, mn, dp - n, n, ip - rn, rn, tp);
     212        /* We computed {xp,mn} <- {ip,rn} * {dp,n} mod (B^mn-1) */
     213        /* We know that 2*|ip*dp + dp*B^rn - B^{rn+n}| < B^mn-1 */
     214        /* Add dp*B^rn mod (B^mn-1) */
     215        ASSERT (n >= mn - rn);
     216        cy = mpn_add_n (xp + rn, xp + rn, dp - n, mn - rn);
     217        cy = mpn_add_nc (xp, xp, dp - (n - (mn - rn)), n - (mn - rn), cy);
     218        /* Subtract B^{rn+n}, maybe only compensate the carry*/
     219        xp[mn] = CNST_LIMB (1); /* set a limit for DECR_U */
     220        MPN_DECR_U (xp + rn + n - mn, 2 * mn + 1 - rn - n, CNST_LIMB (1) - cy);
     221        MPN_DECR_U (xp, mn, CNST_LIMB (1) - xp[mn]); /* if DECR_U eroded xp[mn] */
     222        cy = CNST_LIMB(0); /* Remember we are working Mod B^mn-1 */
     223      }
     224  
     225      if (xp[n] < CNST_LIMB (2)) { /* "positive" residue class */
     226        cy = xp[n]; /* 0 <= cy <= 1 here. */
     227  #if HAVE_NATIVE_mpn_sublsh1_n
     228        if (cy++) {
     229  	if (mpn_cmp (xp, dp - n, n) > 0) {
     230  	  mp_limb_t chk;
     231  	  chk = mpn_sublsh1_n (xp, xp, dp - n, n);
     232  	  ASSERT (chk == xp[n]);
     233  	  ++ cy;
     234  	} else
     235  	  ASSERT_CARRY (mpn_sub_n (xp, xp, dp - n, n));
     236        }
     237  #else /* no mpn_sublsh1_n*/
     238        if (cy++ && !mpn_sub_n (xp, xp, dp - n, n)) {
     239  	ASSERT_CARRY (mpn_sub_n (xp, xp, dp - n, n));
     240  	++cy;
     241        }
     242  #endif
     243        /* 1 <= cy <= 3 here. */
     244  #if HAVE_NATIVE_mpn_rsblsh1_n
     245        if (mpn_cmp (xp, dp - n, n) > 0) {
     246  	ASSERT_NOCARRY (mpn_rsblsh1_n (xp + n, xp, dp - n, n));
     247  	++cy;
     248        } else
     249  	ASSERT_NOCARRY (mpn_sub_nc (xp + 2 * n - rn, dp - rn, xp + n - rn, rn, mpn_cmp (xp, dp - n, n - rn) > 0));
     250  #else /* no mpn_rsblsh1_n*/
     251        if (mpn_cmp (xp, dp - n, n) > 0) {
     252  	ASSERT_NOCARRY (mpn_sub_n (xp, xp, dp - n, n));
     253  	++cy;
     254        }
     255        ASSERT_NOCARRY (mpn_sub_nc (xp + 2 * n - rn, dp - rn, xp + n - rn, rn, mpn_cmp (xp, dp - n, n - rn) > 0));
     256  #endif
     257        MPN_DECR_U(ip - rn, rn, cy); /* 1 <= cy <= 4 here. */
     258      } else { /* "negative" residue class */
     259        ASSERT (xp[n] >= GMP_NUMB_MAX - CNST_LIMB(1));
     260        MPN_DECR_U(xp, n + 1, cy);
     261        if (xp[n] != GMP_NUMB_MAX) {
     262  	MPN_INCR_U(ip - rn, rn, CNST_LIMB (1));
     263  	ASSERT_CARRY (mpn_add_n (xp, xp, dp - n, n));
     264        }
     265        mpn_com (xp + 2 * n - rn, xp + n - rn, rn);
     266      }
     267  
     268      /* Compute x_ju_j. FIXME:We need {xp+rn,rn}, mulhi? */
     269      mpn_mul_n (xp, xp + 2 * n - rn, ip - rn, rn);
     270      cy = mpn_add_n (xp + rn, xp + rn, xp + 2 * n - rn, 2 * rn - n);
     271      cy = mpn_add_nc (ip - n, xp + 3 * rn - n, xp + n + rn, n - rn, cy);
     272      MPN_INCR_U (ip - rn, rn, cy);
     273      if (sizp == sizes) { /* Get out of the cycle */
     274        /* Check for possible carry propagation from below. */
     275        cy = xp[3 * rn - n - 1] > GMP_NUMB_MAX - CNST_LIMB (7); /* Be conservative. */
     276        /*    cy = mpn_add_1 (xp + rn, xp + rn, 2*rn - n, 4); */
     277        break;
     278      }
     279      rn = n;
     280    }
     281    TMP_FREE;
     282  
     283    return cy;
     284  #undef xp
     285  }
     286  
     287  mp_limb_t
     288  mpn_invertappr (mp_ptr ip, mp_srcptr dp, mp_size_t n, mp_ptr scratch)
     289  {
     290    ASSERT (n > 0);
     291    ASSERT (dp[n-1] & GMP_NUMB_HIGHBIT);
     292    ASSERT (! MPN_OVERLAP_P (ip, n, dp, n));
     293    ASSERT (! MPN_OVERLAP_P (ip, n, scratch, mpn_invertappr_itch(n)));
     294    ASSERT (! MPN_OVERLAP_P (dp, n, scratch, mpn_invertappr_itch(n)));
     295  
     296    if (BELOW_THRESHOLD (n, INV_NEWTON_THRESHOLD))
     297      return mpn_bc_invertappr (ip, dp, n, scratch);
     298    else
     299      return mpn_ni_invertappr (ip, dp, n, scratch);
     300  }