(root)/
flex-2.6.4/
src/
tblcmp.c
       1  /* tblcmp - table compression routines */
       2  
       3  /*  Copyright (c) 1990 The Regents of the University of California. */
       4  /*  All rights reserved. */
       5  
       6  /*  This code is derived from software contributed to Berkeley by */
       7  /*  Vern Paxson. */
       8  
       9  /*  The United States Government has rights in this work pursuant */
      10  /*  to contract no. DE-AC03-76SF00098 between the United States */
      11  /*  Department of Energy and the University of California. */
      12  
      13  /*  This file is part of flex. */
      14  
      15  /*  Redistribution and use in source and binary forms, with or without */
      16  /*  modification, are permitted provided that the following conditions */
      17  /*  are met: */
      18  
      19  /*  1. Redistributions of source code must retain the above copyright */
      20  /*     notice, this list of conditions and the following disclaimer. */
      21  /*  2. Redistributions in binary form must reproduce the above copyright */
      22  /*     notice, this list of conditions and the following disclaimer in the */
      23  /*     documentation and/or other materials provided with the distribution. */
      24  
      25  /*  Neither the name of the University nor the names of its contributors */
      26  /*  may be used to endorse or promote products derived from this software */
      27  /*  without specific prior written permission. */
      28  
      29  /*  THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
      30  /*  IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
      31  /*  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
      32  /*  PURPOSE. */
      33  
      34  #include "flexdef.h"
      35  
      36  
      37  /* declarations for functions that have forward references */
      38  
      39  void mkentry(int *, int, int, int, int);
      40  void mkprot(int[], int, int);
      41  void mktemplate(int[], int, int);
      42  void mv2front(int);
      43  int tbldiff(int[], int, int[]);
      44  
      45  
      46  /* bldtbl - build table entries for dfa state
      47   *
      48   * synopsis
      49   *   int state[numecs], statenum, totaltrans, comstate, comfreq;
      50   *   bldtbl( state, statenum, totaltrans, comstate, comfreq );
      51   *
      52   * State is the statenum'th dfa state.  It is indexed by equivalence class and
      53   * gives the number of the state to enter for a given equivalence class.
      54   * totaltrans is the total number of transitions out of the state.  Comstate
      55   * is that state which is the destination of the most transitions out of State.
      56   * Comfreq is how many transitions there are out of State to Comstate.
      57   *
      58   * A note on terminology:
      59   *    "protos" are transition tables which have a high probability of
      60   * either being redundant (a state processed later will have an identical
      61   * transition table) or nearly redundant (a state processed later will have
      62   * many of the same out-transitions).  A "most recently used" queue of
      63   * protos is kept around with the hope that most states will find a proto
      64   * which is similar enough to be usable, and therefore compacting the
      65   * output tables.
      66   *    "templates" are a special type of proto.  If a transition table is
      67   * homogeneous or nearly homogeneous (all transitions go to the same
      68   * destination) then the odds are good that future states will also go
      69   * to the same destination state on basically the same character set.
      70   * These homogeneous states are so common when dealing with large rule
      71   * sets that they merit special attention.  If the transition table were
      72   * simply made into a proto, then (typically) each subsequent, similar
      73   * state will differ from the proto for two out-transitions.  One of these
      74   * out-transitions will be that character on which the proto does not go
      75   * to the common destination, and one will be that character on which the
      76   * state does not go to the common destination.  Templates, on the other
      77   * hand, go to the common state on EVERY transition character, and therefore
      78   * cost only one difference.
      79   */
      80  
      81  void    bldtbl (int state[], int statenum, int totaltrans, int comstate, int comfreq)
      82  {
      83  	int     extptr, extrct[2][CSIZE + 1];
      84  	int     mindiff, minprot, i, d;
      85  
      86  	/* If extptr is 0 then the first array of extrct holds the result
      87  	 * of the "best difference" to date, which is those transitions
      88  	 * which occur in "state" but not in the proto which, to date,
      89  	 * has the fewest differences between itself and "state".  If
      90  	 * extptr is 1 then the second array of extrct hold the best
      91  	 * difference.  The two arrays are toggled between so that the
      92  	 * best difference to date can be kept around and also a difference
      93  	 * just created by checking against a candidate "best" proto.
      94  	 */
      95  
      96  	extptr = 0;
      97  
      98  	/* If the state has too few out-transitions, don't bother trying to
      99  	 * compact its tables.
     100  	 */
     101  
     102  	if ((totaltrans * 100) < (numecs * PROTO_SIZE_PERCENTAGE))
     103  		mkentry (state, numecs, statenum, JAMSTATE, totaltrans);
     104  
     105  	else {
     106  		/* "checkcom" is true if we should only check "state" against
     107  		 * protos which have the same "comstate" value.
     108  		 */
     109  		int     checkcom =
     110  
     111  			comfreq * 100 > totaltrans * CHECK_COM_PERCENTAGE;
     112  
     113  		minprot = firstprot;
     114  		mindiff = totaltrans;
     115  
     116  		if (checkcom) {
     117  			/* Find first proto which has the same "comstate". */
     118  			for (i = firstprot; i != NIL; i = protnext[i])
     119  				if (protcomst[i] == comstate) {
     120  					minprot = i;
     121  					mindiff = tbldiff (state, minprot,
     122  							   extrct[extptr]);
     123  					break;
     124  				}
     125  		}
     126  
     127  		else {
     128  			/* Since we've decided that the most common destination
     129  			 * out of "state" does not occur with a high enough
     130  			 * frequency, we set the "comstate" to zero, assuring
     131  			 * that if this state is entered into the proto list,
     132  			 * it will not be considered a template.
     133  			 */
     134  			comstate = 0;
     135  
     136  			if (firstprot != NIL) {
     137  				minprot = firstprot;
     138  				mindiff = tbldiff (state, minprot,
     139  						   extrct[extptr]);
     140  			}
     141  		}
     142  
     143  		/* We now have the first interesting proto in "minprot".  If
     144  		 * it matches within the tolerances set for the first proto,
     145  		 * we don't want to bother scanning the rest of the proto list
     146  		 * to see if we have any other reasonable matches.
     147  		 */
     148  
     149  		if (mindiff * 100 >
     150  		    totaltrans * FIRST_MATCH_DIFF_PERCENTAGE) {
     151  			/* Not a good enough match.  Scan the rest of the
     152  			 * protos.
     153  			 */
     154  			for (i = minprot; i != NIL; i = protnext[i]) {
     155  				d = tbldiff (state, i, extrct[1 - extptr]);
     156  				if (d < mindiff) {
     157  					extptr = 1 - extptr;
     158  					mindiff = d;
     159  					minprot = i;
     160  				}
     161  			}
     162  		}
     163  
     164  		/* Check if the proto we've decided on as our best bet is close
     165  		 * enough to the state we want to match to be usable.
     166  		 */
     167  
     168  		if (mindiff * 100 >
     169  		    totaltrans * ACCEPTABLE_DIFF_PERCENTAGE) {
     170  			/* No good.  If the state is homogeneous enough,
     171  			 * we make a template out of it.  Otherwise, we
     172  			 * make a proto.
     173  			 */
     174  
     175  			if (comfreq * 100 >=
     176  			    totaltrans * TEMPLATE_SAME_PERCENTAGE)
     177  					mktemplate (state, statenum,
     178  						    comstate);
     179  
     180  			else {
     181  				mkprot (state, statenum, comstate);
     182  				mkentry (state, numecs, statenum,
     183  					 JAMSTATE, totaltrans);
     184  			}
     185  		}
     186  
     187  		else {		/* use the proto */
     188  			mkentry (extrct[extptr], numecs, statenum,
     189  				 prottbl[minprot], mindiff);
     190  
     191  			/* If this state was sufficiently different from the
     192  			 * proto we built it from, make it, too, a proto.
     193  			 */
     194  
     195  			if (mindiff * 100 >=
     196  			    totaltrans * NEW_PROTO_DIFF_PERCENTAGE)
     197  					mkprot (state, statenum, comstate);
     198  
     199  			/* Since mkprot added a new proto to the proto queue,
     200  			 * it's possible that "minprot" is no longer on the
     201  			 * proto queue (if it happened to have been the last
     202  			 * entry, it would have been bumped off).  If it's
     203  			 * not there, then the new proto took its physical
     204  			 * place (though logically the new proto is at the
     205  			 * beginning of the queue), so in that case the
     206  			 * following call will do nothing.
     207  			 */
     208  
     209  			mv2front (minprot);
     210  		}
     211  	}
     212  }
     213  
     214  
     215  /* cmptmps - compress template table entries
     216   *
     217   * Template tables are compressed by using the 'template equivalence
     218   * classes', which are collections of transition character equivalence
     219   * classes which always appear together in templates - really meta-equivalence
     220   * classes.
     221   */
     222  
     223  void    cmptmps (void)
     224  {
     225  	int tmpstorage[CSIZE + 1];
     226  	int *tmp = tmpstorage, i, j;
     227  	int totaltrans, trans;
     228  
     229  	peakpairs = numtemps * numecs + tblend;
     230  
     231  	if (usemecs) {
     232  		/* Create equivalence classes based on data gathered on
     233  		 * template transitions.
     234  		 */
     235  		nummecs = cre8ecs (tecfwd, tecbck, numecs);
     236  	}
     237  
     238  	else
     239  		nummecs = numecs;
     240  
     241  	while (lastdfa + numtemps + 1 >= current_max_dfas)
     242  		increase_max_dfas ();
     243  
     244  	/* Loop through each template. */
     245  
     246  	for (i = 1; i <= numtemps; ++i) {
     247  		/* Number of non-jam transitions out of this template. */
     248  		totaltrans = 0;
     249  
     250  		for (j = 1; j <= numecs; ++j) {
     251  			trans = tnxt[numecs * i + j];
     252  
     253  			if (usemecs) {
     254  				/* The absolute value of tecbck is the
     255  				 * meta-equivalence class of a given
     256  				 * equivalence class, as set up by cre8ecs().
     257  				 */
     258  				if (tecbck[j] > 0) {
     259  					tmp[tecbck[j]] = trans;
     260  
     261  					if (trans > 0)
     262  						++totaltrans;
     263  				}
     264  			}
     265  
     266  			else {
     267  				tmp[j] = trans;
     268  
     269  				if (trans > 0)
     270  					++totaltrans;
     271  			}
     272  		}
     273  
     274  		/* It is assumed (in a rather subtle way) in the skeleton
     275  		 * that if we're using meta-equivalence classes, the def[]
     276  		 * entry for all templates is the jam template, i.e.,
     277  		 * templates never default to other non-jam table entries
     278  		 * (e.g., another template)
     279  		 */
     280  
     281  		/* Leave room for the jam-state after the last real state. */
     282  		mkentry (tmp, nummecs, lastdfa + i + 1, JAMSTATE,
     283  			 totaltrans);
     284  	}
     285  }
     286  
     287  
     288  
     289  /* expand_nxt_chk - expand the next check arrays */
     290  
     291  void    expand_nxt_chk (void)
     292  {
     293  	int old_max = current_max_xpairs;
     294  
     295  	current_max_xpairs += MAX_XPAIRS_INCREMENT;
     296  
     297  	++num_reallocs;
     298  
     299  	nxt = reallocate_integer_array (nxt, current_max_xpairs);
     300  	chk = reallocate_integer_array (chk, current_max_xpairs);
     301  
     302  	memset(chk + old_max, 0, MAX_XPAIRS_INCREMENT * sizeof(int));
     303  }
     304  
     305  
     306  /* find_table_space - finds a space in the table for a state to be placed
     307   *
     308   * synopsis
     309   *     int *state, numtrans, block_start;
     310   *     int find_table_space();
     311   *
     312   *     block_start = find_table_space( state, numtrans );
     313   *
     314   * State is the state to be added to the full speed transition table.
     315   * Numtrans is the number of out-transitions for the state.
     316   *
     317   * find_table_space() returns the position of the start of the first block (in
     318   * chk) able to accommodate the state
     319   *
     320   * In determining if a state will or will not fit, find_table_space() must take
     321   * into account the fact that an end-of-buffer state will be added at [0],
     322   * and an action number will be added in [-1].
     323   */
     324  
     325  int     find_table_space (int *state, int numtrans)
     326  {
     327  	/* Firstfree is the position of the first possible occurrence of two
     328  	 * consecutive unused records in the chk and nxt arrays.
     329  	 */
     330  	int i;
     331  	int *state_ptr, *chk_ptr;
     332  	int *ptr_to_last_entry_in_state;
     333  
     334  	/* If there are too many out-transitions, put the state at the end of
     335  	 * nxt and chk.
     336  	 */
     337  	if (numtrans > MAX_XTIONS_FULL_INTERIOR_FIT) {
     338  		/* If table is empty, return the first available spot in
     339  		 * chk/nxt, which should be 1.
     340  		 */
     341  		if (tblend < 2)
     342  			return 1;
     343  
     344  		/* Start searching for table space near the end of
     345  		 * chk/nxt arrays.
     346  		 */
     347  		i = tblend - numecs;
     348  	}
     349  
     350  	else
     351  		/* Start searching for table space from the beginning
     352  		 * (skipping only the elements which will definitely not
     353  		 * hold the new state).
     354  		 */
     355  		i = firstfree;
     356  
     357  	while (1) {		/* loops until a space is found */
     358  		while (i + numecs >= current_max_xpairs)
     359  			expand_nxt_chk ();
     360  
     361  		/* Loops until space for end-of-buffer and action number
     362  		 * are found.
     363  		 */
     364  		while (1) {
     365  			/* Check for action number space. */
     366  			if (chk[i - 1] == 0) {
     367  				/* Check for end-of-buffer space. */
     368  				if (chk[i] == 0)
     369  					break;
     370  
     371  				else
     372  					/* Since i != 0, there is no use
     373  					 * checking to see if (++i) - 1 == 0,
     374  					 * because that's the same as i == 0,
     375  					 * so we skip a space.
     376  					 */
     377  					i += 2;
     378  			}
     379  
     380  			else
     381  				++i;
     382  
     383  			while (i + numecs >= current_max_xpairs)
     384  				expand_nxt_chk ();
     385  		}
     386  
     387  		/* If we started search from the beginning, store the new
     388  		 * firstfree for the next call of find_table_space().
     389  		 */
     390  		if (numtrans <= MAX_XTIONS_FULL_INTERIOR_FIT)
     391  			firstfree = i + 1;
     392  
     393  		/* Check to see if all elements in chk (and therefore nxt)
     394  		 * that are needed for the new state have not yet been taken.
     395  		 */
     396  
     397  		state_ptr = &state[1];
     398  		ptr_to_last_entry_in_state = &chk[i + numecs + 1];
     399  
     400  		for (chk_ptr = &chk[i + 1];
     401  		     chk_ptr != ptr_to_last_entry_in_state; ++chk_ptr)
     402  			if (*(state_ptr++) != 0 && *chk_ptr != 0)
     403  				break;
     404  
     405  		if (chk_ptr == ptr_to_last_entry_in_state)
     406  			return i;
     407  
     408  		else
     409  			++i;
     410  	}
     411  }
     412  
     413  
     414  /* inittbl - initialize transition tables
     415   *
     416   * Initializes "firstfree" to be one beyond the end of the table.  Initializes
     417   * all "chk" entries to be zero.
     418   */
     419  void    inittbl (void)
     420  {
     421  	int i;
     422  
     423  	memset(chk, 0, (size_t) current_max_xpairs * sizeof(int));
     424  
     425  	tblend = 0;
     426  	firstfree = tblend + 1;
     427  	numtemps = 0;
     428  
     429  	if (usemecs) {
     430  		/* Set up doubly-linked meta-equivalence classes; these
     431  		 * are sets of equivalence classes which all have identical
     432  		 * transitions out of TEMPLATES.
     433  		 */
     434  
     435  		tecbck[1] = NIL;
     436  
     437  		for (i = 2; i <= numecs; ++i) {
     438  			tecbck[i] = i - 1;
     439  			tecfwd[i - 1] = i;
     440  		}
     441  
     442  		tecfwd[numecs] = NIL;
     443  	}
     444  }
     445  
     446  
     447  /* mkdeftbl - make the default, "jam" table entries */
     448  
     449  void    mkdeftbl (void)
     450  {
     451  	int     i;
     452  
     453  	jamstate = lastdfa + 1;
     454  
     455  	++tblend;		/* room for transition on end-of-buffer character */
     456  
     457  	while (tblend + numecs >= current_max_xpairs)
     458  		expand_nxt_chk ();
     459  
     460  	/* Add in default end-of-buffer transition. */
     461  	nxt[tblend] = end_of_buffer_state;
     462  	chk[tblend] = jamstate;
     463  
     464  	for (i = 1; i <= numecs; ++i) {
     465  		nxt[tblend + i] = 0;
     466  		chk[tblend + i] = jamstate;
     467  	}
     468  
     469  	jambase = tblend;
     470  
     471  	base[jamstate] = jambase;
     472  	def[jamstate] = 0;
     473  
     474  	tblend += numecs;
     475  	++numtemps;
     476  }
     477  
     478  
     479  /* mkentry - create base/def and nxt/chk entries for transition array
     480   *
     481   * synopsis
     482   *   int state[numchars + 1], numchars, statenum, deflink, totaltrans;
     483   *   mkentry( state, numchars, statenum, deflink, totaltrans );
     484   *
     485   * "state" is a transition array "numchars" characters in size, "statenum"
     486   * is the offset to be used into the base/def tables, and "deflink" is the
     487   * entry to put in the "def" table entry.  If "deflink" is equal to
     488   * "JAMSTATE", then no attempt will be made to fit zero entries of "state"
     489   * (i.e., jam entries) into the table.  It is assumed that by linking to
     490   * "JAMSTATE" they will be taken care of.  In any case, entries in "state"
     491   * marking transitions to "SAME_TRANS" are treated as though they will be
     492   * taken care of by whereever "deflink" points.  "totaltrans" is the total
     493   * number of transitions out of the state.  If it is below a certain threshold,
     494   * the tables are searched for an interior spot that will accommodate the
     495   * state array.
     496   */
     497  
     498  void    mkentry (int *state, int numchars, int statenum, int deflink,
     499  		 int totaltrans)
     500  {
     501  	int minec, maxec, i, baseaddr;
     502  	int tblbase, tbllast;
     503  
     504  	if (totaltrans == 0) {	/* there are no out-transitions */
     505  		if (deflink == JAMSTATE)
     506  			base[statenum] = JAMSTATE;
     507  		else
     508  			base[statenum] = 0;
     509  
     510  		def[statenum] = deflink;
     511  		return;
     512  	}
     513  
     514  	for (minec = 1; minec <= numchars; ++minec) {
     515  		if (state[minec] != SAME_TRANS)
     516  			if (state[minec] != 0 || deflink != JAMSTATE)
     517  				break;
     518  	}
     519  
     520  	if (totaltrans == 1) {
     521  		/* There's only one out-transition.  Save it for later to fill
     522  		 * in holes in the tables.
     523  		 */
     524  		stack1 (statenum, minec, state[minec], deflink);
     525  		return;
     526  	}
     527  
     528  	for (maxec = numchars; maxec > 0; --maxec) {
     529  		if (state[maxec] != SAME_TRANS)
     530  			if (state[maxec] != 0 || deflink != JAMSTATE)
     531  				break;
     532  	}
     533  
     534  	/* Whether we try to fit the state table in the middle of the table
     535  	 * entries we have already generated, or if we just take the state
     536  	 * table at the end of the nxt/chk tables, we must make sure that we
     537  	 * have a valid base address (i.e., non-negative).  Note that
     538  	 * negative base addresses dangerous at run-time (because indexing
     539  	 * the nxt array with one and a low-valued character will access
     540  	 * memory before the start of the array.
     541  	 */
     542  
     543  	/* Find the first transition of state that we need to worry about. */
     544  	if (totaltrans * 100 <= numchars * INTERIOR_FIT_PERCENTAGE) {
     545  		/* Attempt to squeeze it into the middle of the tables. */
     546  		baseaddr = firstfree;
     547  
     548  		while (baseaddr < minec) {
     549  			/* Using baseaddr would result in a negative base
     550  			 * address below; find the next free slot.
     551  			 */
     552  			for (++baseaddr; chk[baseaddr] != 0; ++baseaddr) ;
     553  		}
     554  
     555  		while (baseaddr + maxec - minec + 1 >= current_max_xpairs)
     556  			expand_nxt_chk ();
     557  
     558  		for (i = minec; i <= maxec; ++i)
     559  			if (state[i] != SAME_TRANS &&
     560  			    (state[i] != 0 || deflink != JAMSTATE) &&
     561  			    chk[baseaddr + i - minec] != 0) {	/* baseaddr unsuitable - find another */
     562  				for (++baseaddr;
     563  				     baseaddr < current_max_xpairs &&
     564  				     chk[baseaddr] != 0; ++baseaddr) ;
     565  
     566  				while (baseaddr + maxec - minec + 1 >=
     567  				       current_max_xpairs)
     568  						expand_nxt_chk ();
     569  
     570  				/* Reset the loop counter so we'll start all
     571  				 * over again next time it's incremented.
     572  				 */
     573  
     574  				i = minec - 1;
     575  			}
     576  	}
     577  
     578  	else {
     579  		/* Ensure that the base address we eventually generate is
     580  		 * non-negative.
     581  		 */
     582  		baseaddr = MAX (tblend + 1, minec);
     583  	}
     584  
     585  	tblbase = baseaddr - minec;
     586  	tbllast = tblbase + maxec;
     587  
     588  	while (tbllast + 1 >= current_max_xpairs)
     589  		expand_nxt_chk ();
     590  
     591  	base[statenum] = tblbase;
     592  	def[statenum] = deflink;
     593  
     594  	for (i = minec; i <= maxec; ++i)
     595  		if (state[i] != SAME_TRANS)
     596  			if (state[i] != 0 || deflink != JAMSTATE) {
     597  				nxt[tblbase + i] = state[i];
     598  				chk[tblbase + i] = statenum;
     599  			}
     600  
     601  	if (baseaddr == firstfree)
     602  		/* Find next free slot in tables. */
     603  		for (++firstfree; chk[firstfree] != 0; ++firstfree) ;
     604  
     605  	tblend = MAX (tblend, tbllast);
     606  }
     607  
     608  
     609  /* mk1tbl - create table entries for a state (or state fragment) which
     610   *            has only one out-transition
     611   */
     612  
     613  void    mk1tbl (int state, int sym, int onenxt, int onedef)
     614  {
     615  	if (firstfree < sym)
     616  		firstfree = sym;
     617  
     618  	while (chk[firstfree] != 0)
     619  		if (++firstfree >= current_max_xpairs)
     620  			expand_nxt_chk ();
     621  
     622  	base[state] = firstfree - sym;
     623  	def[state] = onedef;
     624  	chk[firstfree] = state;
     625  	nxt[firstfree] = onenxt;
     626  
     627  	if (firstfree > tblend) {
     628  		tblend = firstfree++;
     629  
     630  		if (firstfree >= current_max_xpairs)
     631  			expand_nxt_chk ();
     632  	}
     633  }
     634  
     635  
     636  /* mkprot - create new proto entry */
     637  
     638  void    mkprot (int state[], int statenum, int comstate)
     639  {
     640  	int     i, slot, tblbase;
     641  
     642  	if (++numprots >= MSP || numecs * numprots >= PROT_SAVE_SIZE) {
     643  		/* Gotta make room for the new proto by dropping last entry in
     644  		 * the queue.
     645  		 */
     646  		slot = lastprot;
     647  		lastprot = protprev[lastprot];
     648  		protnext[lastprot] = NIL;
     649  	}
     650  
     651  	else
     652  		slot = numprots;
     653  
     654  	protnext[slot] = firstprot;
     655  
     656  	if (firstprot != NIL)
     657  		protprev[firstprot] = slot;
     658  
     659  	firstprot = slot;
     660  	prottbl[slot] = statenum;
     661  	protcomst[slot] = comstate;
     662  
     663  	/* Copy state into save area so it can be compared with rapidly. */
     664  	tblbase = numecs * (slot - 1);
     665  
     666  	for (i = 1; i <= numecs; ++i)
     667  		protsave[tblbase + i] = state[i];
     668  }
     669  
     670  
     671  /* mktemplate - create a template entry based on a state, and connect the state
     672   *              to it
     673   */
     674  
     675  void    mktemplate (int state[], int statenum, int comstate)
     676  {
     677  	int     i, numdiff, tmpbase, tmp[CSIZE + 1];
     678  	unsigned char    transset[CSIZE + 1];
     679  	int     tsptr;
     680  
     681  	++numtemps;
     682  
     683  	tsptr = 0;
     684  
     685  	/* Calculate where we will temporarily store the transition table
     686  	 * of the template in the tnxt[] array.  The final transition table
     687  	 * gets created by cmptmps().
     688  	 */
     689  
     690  	tmpbase = numtemps * numecs;
     691  
     692  	if (tmpbase + numecs >= current_max_template_xpairs) {
     693  		current_max_template_xpairs +=
     694  			MAX_TEMPLATE_XPAIRS_INCREMENT;
     695  
     696  		++num_reallocs;
     697  
     698  		tnxt = reallocate_integer_array (tnxt,
     699  						 current_max_template_xpairs);
     700  	}
     701  
     702  	for (i = 1; i <= numecs; ++i)
     703  		if (state[i] == 0)
     704  			tnxt[tmpbase + i] = 0;
     705  		else {
     706  			/* Note: range 1..256 is mapped to 1..255,0 */
     707  			transset[tsptr++] = (unsigned char) i;
     708  			tnxt[tmpbase + i] = comstate;
     709  		}
     710  
     711  	if (usemecs)
     712  		mkeccl (transset, tsptr, tecfwd, tecbck, numecs, 0);
     713  
     714  	mkprot (tnxt + tmpbase, -numtemps, comstate);
     715  
     716  	/* We rely on the fact that mkprot adds things to the beginning
     717  	 * of the proto queue.
     718  	 */
     719  
     720  	numdiff = tbldiff (state, firstprot, tmp);
     721  	mkentry (tmp, numecs, statenum, -numtemps, numdiff);
     722  }
     723  
     724  
     725  /* mv2front - move proto queue element to front of queue */
     726  
     727  void    mv2front (int qelm)
     728  {
     729  	if (firstprot != qelm) {
     730  		if (qelm == lastprot)
     731  			lastprot = protprev[lastprot];
     732  
     733  		protnext[protprev[qelm]] = protnext[qelm];
     734  
     735  		if (protnext[qelm] != NIL)
     736  			protprev[protnext[qelm]] = protprev[qelm];
     737  
     738  		protprev[qelm] = NIL;
     739  		protnext[qelm] = firstprot;
     740  		protprev[firstprot] = qelm;
     741  		firstprot = qelm;
     742  	}
     743  }
     744  
     745  
     746  /* place_state - place a state into full speed transition table
     747   *
     748   * State is the statenum'th state.  It is indexed by equivalence class and
     749   * gives the number of the state to enter for a given equivalence class.
     750   * Transnum is the number of out-transitions for the state.
     751   */
     752  
     753  void    place_state (int *state, int statenum, int transnum)
     754  {
     755  	int i;
     756  	int *state_ptr;
     757  	int position = find_table_space (state, transnum);
     758  
     759  	/* "base" is the table of start positions. */
     760  	base[statenum] = position;
     761  
     762  	/* Put in action number marker; this non-zero number makes sure that
     763  	 * find_table_space() knows that this position in chk/nxt is taken
     764  	 * and should not be used for another accepting number in another
     765  	 * state.
     766  	 */
     767  	chk[position - 1] = 1;
     768  
     769  	/* Put in end-of-buffer marker; this is for the same purposes as
     770  	 * above.
     771  	 */
     772  	chk[position] = 1;
     773  
     774  	/* Place the state into chk and nxt. */
     775  	state_ptr = &state[1];
     776  
     777  	for (i = 1; i <= numecs; ++i, ++state_ptr)
     778  		if (*state_ptr != 0) {
     779  			chk[position + i] = i;
     780  			nxt[position + i] = *state_ptr;
     781  		}
     782  
     783  	if (position + numecs > tblend)
     784  		tblend = position + numecs;
     785  }
     786  
     787  
     788  /* stack1 - save states with only one out-transition to be processed later
     789   *
     790   * If there's room for another state on the "one-transition" stack, the
     791   * state is pushed onto it, to be processed later by mk1tbl.  If there's
     792   * no room, we process the sucker right now.
     793   */
     794  
     795  void    stack1 (int statenum, int sym, int nextstate, int deflink)
     796  {
     797  	if (onesp >= ONE_STACK_SIZE - 1)
     798  		mk1tbl (statenum, sym, nextstate, deflink);
     799  
     800  	else {
     801  		++onesp;
     802  		onestate[onesp] = statenum;
     803  		onesym[onesp] = sym;
     804  		onenext[onesp] = nextstate;
     805  		onedef[onesp] = deflink;
     806  	}
     807  }
     808  
     809  
     810  /* tbldiff - compute differences between two state tables
     811   *
     812   * "state" is the state array which is to be extracted from the pr'th
     813   * proto.  "pr" is both the number of the proto we are extracting from
     814   * and an index into the save area where we can find the proto's complete
     815   * state table.  Each entry in "state" which differs from the corresponding
     816   * entry of "pr" will appear in "ext".
     817   *
     818   * Entries which are the same in both "state" and "pr" will be marked
     819   * as transitions to "SAME_TRANS" in "ext".  The total number of differences
     820   * between "state" and "pr" is returned as function value.  Note that this
     821   * number is "numecs" minus the number of "SAME_TRANS" entries in "ext".
     822   */
     823  
     824  int     tbldiff (int state[], int pr, int ext[])
     825  {
     826  	int i, *sp = state, *ep = ext, *protp;
     827  	int numdiff = 0;
     828  
     829  	protp = &protsave[numecs * (pr - 1)];
     830  
     831  	for (i = numecs; i > 0; --i) {
     832  		if (*++protp == *++sp)
     833  			*++ep = SAME_TRANS;
     834  		else {
     835  			*++ep = *sp;
     836  			++numdiff;
     837  		}
     838  	}
     839  
     840  	return numdiff;
     841  }