(root)/
flex-2.6.4/
src/
nfa.c
       1  /* nfa - NFA construction routines */
       2  
       3  /*  Copyright (c) 1990 The Regents of the University of California. */
       4  /*  All rights reserved. */
       5  
       6  /*  This code is derived from software contributed to Berkeley by */
       7  /*  Vern Paxson. */
       8  
       9  /*  The United States Government has rights in this work pursuant */
      10  /*  to contract no. DE-AC03-76SF00098 between the United States */
      11  /*  Department of Energy and the University of California. */
      12  
      13  /*  This file is part of flex. */
      14  
      15  /*  Redistribution and use in source and binary forms, with or without */
      16  /*  modification, are permitted provided that the following conditions */
      17  /*  are met: */
      18  
      19  /*  1. Redistributions of source code must retain the above copyright */
      20  /*     notice, this list of conditions and the following disclaimer. */
      21  /*  2. Redistributions in binary form must reproduce the above copyright */
      22  /*     notice, this list of conditions and the following disclaimer in the */
      23  /*     documentation and/or other materials provided with the distribution. */
      24  
      25  /*  Neither the name of the University nor the names of its contributors */
      26  /*  may be used to endorse or promote products derived from this software */
      27  /*  without specific prior written permission. */
      28  
      29  /*  THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
      30  /*  IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
      31  /*  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
      32  /*  PURPOSE. */
      33  
      34  #include "flexdef.h"
      35  
      36  
      37  /* declare functions that have forward references */
      38  
      39  int	dupmachine(int);
      40  void	mkxtion(int, int);
      41  
      42  
      43  /* add_accept - add an accepting state to a machine
      44   *
      45   * accepting_number becomes mach's accepting number.
      46   */
      47  
      48  void    add_accept (int mach, int accepting_number)
      49  {
      50  	/* Hang the accepting number off an epsilon state.  if it is associated
      51  	 * with a state that has a non-epsilon out-transition, then the state
      52  	 * will accept BEFORE it makes that transition, i.e., one character
      53  	 * too soon.
      54  	 */
      55  
      56  	if (transchar[finalst[mach]] == SYM_EPSILON)
      57  		accptnum[finalst[mach]] = accepting_number;
      58  
      59  	else {
      60  		int     astate = mkstate (SYM_EPSILON);
      61  
      62  		accptnum[astate] = accepting_number;
      63  		(void) link_machines (mach, astate);
      64  	}
      65  }
      66  
      67  
      68  /* copysingl - make a given number of copies of a singleton machine
      69   *
      70   * synopsis
      71   *
      72   *   newsng = copysingl( singl, num );
      73   *
      74   *     newsng - a new singleton composed of num copies of singl
      75   *     singl  - a singleton machine
      76   *     num    - the number of copies of singl to be present in newsng
      77   */
      78  
      79  int     copysingl (int singl, int num)
      80  {
      81  	int     copy, i;
      82  
      83  	copy = mkstate (SYM_EPSILON);
      84  
      85  	for (i = 1; i <= num; ++i)
      86  		copy = link_machines (copy, dupmachine (singl));
      87  
      88  	return copy;
      89  }
      90  
      91  
      92  /* dumpnfa - debugging routine to write out an nfa */
      93  
      94  void    dumpnfa (int state1)
      95  {
      96  	int     sym, tsp1, tsp2, anum, ns;
      97  
      98  	fprintf (stderr,
      99  		 _
     100  		 ("\n\n********** beginning dump of nfa with start state %d\n"),
     101  		 state1);
     102  
     103  	/* We probably should loop starting at firstst[state1] and going to
     104  	 * lastst[state1], but they're not maintained properly when we "or"
     105  	 * all of the rules together.  So we use our knowledge that the machine
     106  	 * starts at state 1 and ends at lastnfa.
     107  	 */
     108  
     109  	/* for ( ns = firstst[state1]; ns <= lastst[state1]; ++ns ) */
     110  	for (ns = 1; ns <= lastnfa; ++ns) {
     111  		fprintf (stderr, _("state # %4d\t"), ns);
     112  
     113  		sym = transchar[ns];
     114  		tsp1 = trans1[ns];
     115  		tsp2 = trans2[ns];
     116  		anum = accptnum[ns];
     117  
     118  		fprintf (stderr, "%3d:  %4d, %4d", sym, tsp1, tsp2);
     119  
     120  		if (anum != NIL)
     121  			fprintf (stderr, "  [%d]", anum);
     122  
     123  		fprintf (stderr, "\n");
     124  	}
     125  
     126  	fprintf (stderr, _("********** end of dump\n"));
     127  }
     128  
     129  
     130  /* dupmachine - make a duplicate of a given machine
     131   *
     132   * synopsis
     133   *
     134   *   copy = dupmachine( mach );
     135   *
     136   *     copy - holds duplicate of mach
     137   *     mach - machine to be duplicated
     138   *
     139   * note that the copy of mach is NOT an exact duplicate; rather, all the
     140   * transition states values are adjusted so that the copy is self-contained,
     141   * as the original should have been.
     142   *
     143   * also note that the original MUST be contiguous, with its low and high
     144   * states accessible by the arrays firstst and lastst
     145   */
     146  
     147  int     dupmachine (int mach)
     148  {
     149  	int     i, init, state_offset;
     150  	int     state = 0;
     151  	int     last = lastst[mach];
     152  
     153  	for (i = firstst[mach]; i <= last; ++i) {
     154  		state = mkstate (transchar[i]);
     155  
     156  		if (trans1[i] != NO_TRANSITION) {
     157  			mkxtion (finalst[state], trans1[i] + state - i);
     158  
     159  			if (transchar[i] == SYM_EPSILON &&
     160  			    trans2[i] != NO_TRANSITION)
     161  					mkxtion (finalst[state],
     162  						 trans2[i] + state - i);
     163  		}
     164  
     165  		accptnum[state] = accptnum[i];
     166  	}
     167  
     168  	if (state == 0)
     169  		flexfatal (_("empty machine in dupmachine()"));
     170  
     171  	state_offset = state - i + 1;
     172  
     173  	init = mach + state_offset;
     174  	firstst[init] = firstst[mach] + state_offset;
     175  	finalst[init] = finalst[mach] + state_offset;
     176  	lastst[init] = lastst[mach] + state_offset;
     177  
     178  	return init;
     179  }
     180  
     181  
     182  /* finish_rule - finish up the processing for a rule
     183   *
     184   * An accepting number is added to the given machine.  If variable_trail_rule
     185   * is true then the rule has trailing context and both the head and trail
     186   * are variable size.  Otherwise if headcnt or trailcnt is non-zero then
     187   * the machine recognizes a pattern with trailing context and headcnt is
     188   * the number of characters in the matched part of the pattern, or zero
     189   * if the matched part has variable length.  trailcnt is the number of
     190   * trailing context characters in the pattern, or zero if the trailing
     191   * context has variable length.
     192   */
     193  
     194  void    finish_rule (int mach, int variable_trail_rule, int headcnt, int trailcnt,
     195  		     int pcont_act)
     196  {
     197  	char    action_text[MAXLINE];
     198  
     199  	add_accept (mach, num_rules);
     200  
     201  	/* We did this in new_rule(), but it often gets the wrong
     202  	 * number because we do it before we start parsing the current rule.
     203  	 */
     204  	rule_linenum[num_rules] = linenum;
     205  
     206  	/* If this is a continued action, then the line-number has already
     207  	 * been updated, giving us the wrong number.
     208  	 */
     209  	if (continued_action)
     210  		--rule_linenum[num_rules];
     211  
     212  
     213  	/* If the previous rule was continued action, then we inherit the
     214  	 * previous newline flag, possibly overriding the current one.
     215  	 */
     216  	if (pcont_act && rule_has_nl[num_rules - 1])
     217  		rule_has_nl[num_rules] = true;
     218  
     219  	snprintf (action_text, sizeof(action_text), "case %d:\n", num_rules);
     220  	add_action (action_text);
     221  	if (rule_has_nl[num_rules]) {
     222  		snprintf (action_text, sizeof(action_text), "/* rule %d can match eol */\n",
     223  			 num_rules);
     224  		add_action (action_text);
     225  	}
     226  
     227  
     228  	if (variable_trail_rule) {
     229  		rule_type[num_rules] = RULE_VARIABLE;
     230  
     231  		if (performance_report > 0)
     232  			fprintf (stderr,
     233  				 _
     234  				 ("Variable trailing context rule at line %d\n"),
     235  				 rule_linenum[num_rules]);
     236  
     237  		variable_trailing_context_rules = true;
     238  	}
     239  
     240  	else {
     241  		rule_type[num_rules] = RULE_NORMAL;
     242  
     243  		if (headcnt > 0 || trailcnt > 0) {
     244  			/* Do trailing context magic to not match the trailing
     245  			 * characters.
     246  			 */
     247  			char   *scanner_cp = "YY_G(yy_c_buf_p) = yy_cp";
     248  			char   *scanner_bp = "yy_bp";
     249  
     250  			add_action
     251  				("*yy_cp = YY_G(yy_hold_char); /* undo effects of setting up yytext */\n");
     252  
     253  			if (headcnt > 0) {
     254  				if (rule_has_nl[num_rules]) {
     255  					snprintf (action_text, sizeof(action_text),
     256  						"YY_LINENO_REWIND_TO(%s + %d);\n", scanner_bp, headcnt);
     257  					add_action (action_text);
     258  				}
     259  				snprintf (action_text, sizeof(action_text), "%s = %s + %d;\n",
     260  					 scanner_cp, scanner_bp, headcnt);
     261  				add_action (action_text);
     262  			}
     263  
     264  			else {
     265  				if (rule_has_nl[num_rules]) {
     266  					snprintf (action_text, sizeof(action_text),
     267  						 "YY_LINENO_REWIND_TO(yy_cp - %d);\n", trailcnt);
     268  					add_action (action_text);
     269  				}
     270  
     271  				snprintf (action_text, sizeof(action_text), "%s -= %d;\n",
     272  					 scanner_cp, trailcnt);
     273  				add_action (action_text);
     274  			}
     275  
     276  			add_action
     277  				("YY_DO_BEFORE_ACTION; /* set up yytext again */\n");
     278  		}
     279  	}
     280  
     281  	/* Okay, in the action code at this point yytext and yyleng have
     282  	 * their proper final values for this rule, so here's the point
     283  	 * to do any user action.  But don't do it for continued actions,
     284  	 * as that'll result in multiple YY_RULE_SETUP's.
     285  	 */
     286  	if (!continued_action)
     287  		add_action ("YY_RULE_SETUP\n");
     288  
     289  	line_directive_out(NULL, 1);
     290          add_action("[[");
     291  }
     292  
     293  
     294  /* link_machines - connect two machines together
     295   *
     296   * synopsis
     297   *
     298   *   new = link_machines( first, last );
     299   *
     300   *     new    - a machine constructed by connecting first to last
     301   *     first  - the machine whose successor is to be last
     302   *     last   - the machine whose predecessor is to be first
     303   *
     304   * note: this routine concatenates the machine first with the machine
     305   *  last to produce a machine new which will pattern-match first first
     306   *  and then last, and will fail if either of the sub-patterns fails.
     307   *  FIRST is set to new by the operation.  last is unmolested.
     308   */
     309  
     310  int     link_machines (int first, int last)
     311  {
     312  	if (first == NIL)
     313  		return last;
     314  
     315  	else if (last == NIL)
     316  		return first;
     317  
     318  	else {
     319  		mkxtion (finalst[first], last);
     320  		finalst[first] = finalst[last];
     321  		lastst[first] = MAX (lastst[first], lastst[last]);
     322  		firstst[first] = MIN (firstst[first], firstst[last]);
     323  
     324  		return first;
     325  	}
     326  }
     327  
     328  
     329  /* mark_beginning_as_normal - mark each "beginning" state in a machine
     330   *                            as being a "normal" (i.e., not trailing context-
     331   *                            associated) states
     332   *
     333   * The "beginning" states are the epsilon closure of the first state
     334   */
     335  
     336  void    mark_beginning_as_normal (int mach)
     337  {
     338  	switch (state_type[mach]) {
     339  	case STATE_NORMAL:
     340  		/* Oh, we've already visited here. */
     341  		return;
     342  
     343  	case STATE_TRAILING_CONTEXT:
     344  		state_type[mach] = STATE_NORMAL;
     345  
     346  		if (transchar[mach] == SYM_EPSILON) {
     347  			if (trans1[mach] != NO_TRANSITION)
     348  				mark_beginning_as_normal (trans1[mach]);
     349  
     350  			if (trans2[mach] != NO_TRANSITION)
     351  				mark_beginning_as_normal (trans2[mach]);
     352  		}
     353  		break;
     354  
     355  	default:
     356  		flexerror (_
     357  			   ("bad state type in mark_beginning_as_normal()"));
     358  		break;
     359  	}
     360  }
     361  
     362  
     363  /* mkbranch - make a machine that branches to two machines
     364   *
     365   * synopsis
     366   *
     367   *   branch = mkbranch( first, second );
     368   *
     369   *     branch - a machine which matches either first's pattern or second's
     370   *     first, second - machines whose patterns are to be or'ed (the | operator)
     371   *
     372   * Note that first and second are NEITHER destroyed by the operation.  Also,
     373   * the resulting machine CANNOT be used with any other "mk" operation except
     374   * more mkbranch's.  Compare with mkor()
     375   */
     376  
     377  int     mkbranch (int first, int second)
     378  {
     379  	int     eps;
     380  
     381  	if (first == NO_TRANSITION)
     382  		return second;
     383  
     384  	else if (second == NO_TRANSITION)
     385  		return first;
     386  
     387  	eps = mkstate (SYM_EPSILON);
     388  
     389  	mkxtion (eps, first);
     390  	mkxtion (eps, second);
     391  
     392  	return eps;
     393  }
     394  
     395  
     396  /* mkclos - convert a machine into a closure
     397   *
     398   * synopsis
     399   *   new = mkclos( state );
     400   *
     401   * new - a new state which matches the closure of "state"
     402   */
     403  
     404  int     mkclos (int state)
     405  {
     406  	return mkopt (mkposcl (state));
     407  }
     408  
     409  
     410  /* mkopt - make a machine optional
     411   *
     412   * synopsis
     413   *
     414   *   new = mkopt( mach );
     415   *
     416   *     new  - a machine which optionally matches whatever mach matched
     417   *     mach - the machine to make optional
     418   *
     419   * notes:
     420   *     1. mach must be the last machine created
     421   *     2. mach is destroyed by the call
     422   */
     423  
     424  int     mkopt (int mach)
     425  {
     426  	int     eps;
     427  
     428  	if (!SUPER_FREE_EPSILON (finalst[mach])) {
     429  		eps = mkstate (SYM_EPSILON);
     430  		mach = link_machines (mach, eps);
     431  	}
     432  
     433  	/* Can't skimp on the following if FREE_EPSILON(mach) is true because
     434  	 * some state interior to "mach" might point back to the beginning
     435  	 * for a closure.
     436  	 */
     437  	eps = mkstate (SYM_EPSILON);
     438  	mach = link_machines (eps, mach);
     439  
     440  	mkxtion (mach, finalst[mach]);
     441  
     442  	return mach;
     443  }
     444  
     445  
     446  /* mkor - make a machine that matches either one of two machines
     447   *
     448   * synopsis
     449   *
     450   *   new = mkor( first, second );
     451   *
     452   *     new - a machine which matches either first's pattern or second's
     453   *     first, second - machines whose patterns are to be or'ed (the | operator)
     454   *
     455   * note that first and second are both destroyed by the operation
     456   * the code is rather convoluted because an attempt is made to minimize
     457   * the number of epsilon states needed
     458   */
     459  
     460  int     mkor (int first, int second)
     461  {
     462  	int     eps, orend;
     463  
     464  	if (first == NIL)
     465  		return second;
     466  
     467  	else if (second == NIL)
     468  		return first;
     469  
     470  	else {
     471  		/* See comment in mkopt() about why we can't use the first
     472  		 * state of "first" or "second" if they satisfy "FREE_EPSILON".
     473  		 */
     474  		eps = mkstate (SYM_EPSILON);
     475  
     476  		first = link_machines (eps, first);
     477  
     478  		mkxtion (first, second);
     479  
     480  		if (SUPER_FREE_EPSILON (finalst[first]) &&
     481  		    accptnum[finalst[first]] == NIL) {
     482  			orend = finalst[first];
     483  			mkxtion (finalst[second], orend);
     484  		}
     485  
     486  		else if (SUPER_FREE_EPSILON (finalst[second]) &&
     487  			 accptnum[finalst[second]] == NIL) {
     488  			orend = finalst[second];
     489  			mkxtion (finalst[first], orend);
     490  		}
     491  
     492  		else {
     493  			eps = mkstate (SYM_EPSILON);
     494  
     495  			first = link_machines (first, eps);
     496  			orend = finalst[first];
     497  
     498  			mkxtion (finalst[second], orend);
     499  		}
     500  	}
     501  
     502  	finalst[first] = orend;
     503  	return first;
     504  }
     505  
     506  
     507  /* mkposcl - convert a machine into a positive closure
     508   *
     509   * synopsis
     510   *   new = mkposcl( state );
     511   *
     512   *    new - a machine matching the positive closure of "state"
     513   */
     514  
     515  int     mkposcl (int state)
     516  {
     517  	int     eps;
     518  
     519  	if (SUPER_FREE_EPSILON (finalst[state])) {
     520  		mkxtion (finalst[state], state);
     521  		return state;
     522  	}
     523  
     524  	else {
     525  		eps = mkstate (SYM_EPSILON);
     526  		mkxtion (eps, state);
     527  		return link_machines (state, eps);
     528  	}
     529  }
     530  
     531  
     532  /* mkrep - make a replicated machine
     533   *
     534   * synopsis
     535   *   new = mkrep( mach, lb, ub );
     536   *
     537   *    new - a machine that matches whatever "mach" matched from "lb"
     538   *          number of times to "ub" number of times
     539   *
     540   * note
     541   *   if "ub" is INFINITE_REPEAT then "new" matches "lb" or more occurrences of "mach"
     542   */
     543  
     544  int     mkrep (int mach, int lb, int ub)
     545  {
     546  	int     base_mach, tail, copy, i;
     547  
     548  	base_mach = copysingl (mach, lb - 1);
     549  
     550  	if (ub == INFINITE_REPEAT) {
     551  		copy = dupmachine (mach);
     552  		mach = link_machines (mach,
     553  				      link_machines (base_mach,
     554  						     mkclos (copy)));
     555  	}
     556  
     557  	else {
     558  		tail = mkstate (SYM_EPSILON);
     559  
     560  		for (i = lb; i < ub; ++i) {
     561  			copy = dupmachine (mach);
     562  			tail = mkopt (link_machines (copy, tail));
     563  		}
     564  
     565  		mach =
     566  			link_machines (mach,
     567  				       link_machines (base_mach, tail));
     568  	}
     569  
     570  	return mach;
     571  }
     572  
     573  
     574  /* mkstate - create a state with a transition on a given symbol
     575   *
     576   * synopsis
     577   *
     578   *   state = mkstate( sym );
     579   *
     580   *     state - a new state matching sym
     581   *     sym   - the symbol the new state is to have an out-transition on
     582   *
     583   * note that this routine makes new states in ascending order through the
     584   * state array (and increments LASTNFA accordingly).  The routine DUPMACHINE
     585   * relies on machines being made in ascending order and that they are
     586   * CONTIGUOUS.  Change it and you will have to rewrite DUPMACHINE (kludge
     587   * that it admittedly is)
     588   */
     589  
     590  int     mkstate (int sym)
     591  {
     592  	if (++lastnfa >= current_mns) {
     593  		if ((current_mns += MNS_INCREMENT) >= maximum_mns)
     594  			lerr(_
     595  				("input rules are too complicated (>= %d NFA states)"),
     596  current_mns);
     597  
     598  		++num_reallocs;
     599  
     600  		firstst = reallocate_integer_array (firstst, current_mns);
     601  		lastst = reallocate_integer_array (lastst, current_mns);
     602  		finalst = reallocate_integer_array (finalst, current_mns);
     603  		transchar =
     604  			reallocate_integer_array (transchar, current_mns);
     605  		trans1 = reallocate_integer_array (trans1, current_mns);
     606  		trans2 = reallocate_integer_array (trans2, current_mns);
     607  		accptnum =
     608  			reallocate_integer_array (accptnum, current_mns);
     609  		assoc_rule =
     610  			reallocate_integer_array (assoc_rule, current_mns);
     611  		state_type =
     612  			reallocate_integer_array (state_type, current_mns);
     613  	}
     614  
     615  	firstst[lastnfa] = lastnfa;
     616  	finalst[lastnfa] = lastnfa;
     617  	lastst[lastnfa] = lastnfa;
     618  	transchar[lastnfa] = sym;
     619  	trans1[lastnfa] = NO_TRANSITION;
     620  	trans2[lastnfa] = NO_TRANSITION;
     621  	accptnum[lastnfa] = NIL;
     622  	assoc_rule[lastnfa] = num_rules;
     623  	state_type[lastnfa] = current_state_type;
     624  
     625  	/* Fix up equivalence classes base on this transition.  Note that any
     626  	 * character which has its own transition gets its own equivalence
     627  	 * class.  Thus only characters which are only in character classes
     628  	 * have a chance at being in the same equivalence class.  E.g. "a|b"
     629  	 * puts 'a' and 'b' into two different equivalence classes.  "[ab]"
     630  	 * puts them in the same equivalence class (barring other differences
     631  	 * elsewhere in the input).
     632  	 */
     633  
     634  	if (sym < 0) {
     635  		/* We don't have to update the equivalence classes since
     636  		 * that was already done when the ccl was created for the
     637  		 * first time.
     638  		 */
     639  	}
     640  
     641  	else if (sym == SYM_EPSILON)
     642  		++numeps;
     643  
     644  	else {
     645  		check_char (sym);
     646  
     647  		if (useecs)
     648  			/* Map NUL's to csize. */
     649  			mkechar (sym ? sym : csize, nextecm, ecgroup);
     650  	}
     651  
     652  	return lastnfa;
     653  }
     654  
     655  
     656  /* mkxtion - make a transition from one state to another
     657   *
     658   * synopsis
     659   *
     660   *   mkxtion( statefrom, stateto );
     661   *
     662   *     statefrom - the state from which the transition is to be made
     663   *     stateto   - the state to which the transition is to be made
     664   */
     665  
     666  void    mkxtion (int statefrom, int stateto)
     667  {
     668  	if (trans1[statefrom] == NO_TRANSITION)
     669  		trans1[statefrom] = stateto;
     670  
     671  	else if ((transchar[statefrom] != SYM_EPSILON) ||
     672  		 (trans2[statefrom] != NO_TRANSITION))
     673  		flexfatal (_("found too many transitions in mkxtion()"));
     674  
     675  	else {			/* second out-transition for an epsilon state */
     676  		++eps2;
     677  		trans2[statefrom] = stateto;
     678  	}
     679  }
     680  
     681  /* new_rule - initialize for a new rule */
     682  
     683  void    new_rule (void)
     684  {
     685  	if (++num_rules >= current_max_rules) {
     686  		++num_reallocs;
     687  		current_max_rules += MAX_RULES_INCREMENT;
     688  		rule_type = reallocate_integer_array (rule_type,
     689  						      current_max_rules);
     690  		rule_linenum = reallocate_integer_array (rule_linenum,
     691  							 current_max_rules);
     692  		rule_useful = reallocate_integer_array (rule_useful,
     693  							current_max_rules);
     694  		rule_has_nl = reallocate_bool_array (rule_has_nl,
     695  						     current_max_rules);
     696  	}
     697  
     698  	if (num_rules > MAX_RULE)
     699  		lerr (_("too many rules (> %d)!"), MAX_RULE);
     700  
     701  	rule_linenum[num_rules] = linenum;
     702  	rule_useful[num_rules] = false;
     703  	rule_has_nl[num_rules] = false;
     704  }