(root)/
xz-5.4.5/
src/
xz/
util.c
       1  ///////////////////////////////////////////////////////////////////////////////
       2  //
       3  /// \file       util.c
       4  /// \brief      Miscellaneous utility functions
       5  //
       6  //  Author:     Lasse Collin
       7  //
       8  //  This file has been put into the public domain.
       9  //  You can do whatever you want with this file.
      10  //
      11  ///////////////////////////////////////////////////////////////////////////////
      12  
      13  #include "private.h"
      14  #include <stdarg.h>
      15  
      16  
      17  /// Buffers for uint64_to_str() and uint64_to_nicestr()
      18  static char bufs[4][128];
      19  
      20  
      21  // Thousand separator support in uint64_to_str() and uint64_to_nicestr():
      22  //
      23  // DJGPP 2.05 added support for thousands separators but it's broken
      24  // at least under WinXP with Finnish locale that uses a non-breaking space
      25  // as the thousands separator. Workaround by disabling thousands separators
      26  // for DJGPP builds.
      27  //
      28  // MSVC doesn't support thousand separators.
      29  #if defined(__DJGPP__) || defined(_MSC_VER)
      30  #	define FORMAT_THOUSAND_SEP(prefix, suffix) prefix suffix
      31  #	define check_thousand_sep(slot) do { } while (0)
      32  #else
      33  #	define FORMAT_THOUSAND_SEP(prefix, suffix) ((thousand == WORKS) \
      34  			? prefix "'" suffix \
      35  			: prefix suffix)
      36  
      37  static enum { UNKNOWN, WORKS, BROKEN } thousand = UNKNOWN;
      38  
      39  /// Check if thousands separator is supported. Run-time checking is easiest
      40  /// because it seems to be sometimes lacking even on a POSIXish system.
      41  /// Note that trying to use thousands separators when snprintf() doesn't
      42  /// support them results in undefined behavior. This just has happened to
      43  /// work well enough in practice.
      44  ///
      45  /// This must be called before using the FORMAT_THOUSAND_SEP macro.
      46  static void
      47  check_thousand_sep(uint32_t slot)
      48  {
      49  	if (thousand == UNKNOWN) {
      50  		bufs[slot][0] = '\0';
      51  		snprintf(bufs[slot], sizeof(bufs[slot]), "%'u", 1U);
      52  		thousand = bufs[slot][0] == '1' ? WORKS : BROKEN;
      53  	}
      54  
      55  	return;
      56  }
      57  #endif
      58  
      59  
      60  extern void *
      61  xrealloc(void *ptr, size_t size)
      62  {
      63  	assert(size > 0);
      64  
      65  	// Save ptr so that we can free it if realloc fails.
      66  	// The point is that message_fatal ends up calling stdio functions
      67  	// which in some libc implementations might allocate memory from
      68  	// the heap. Freeing ptr improves the chances that there's free
      69  	// memory for stdio functions if they need it.
      70  	void *p = ptr;
      71  	ptr = realloc(ptr, size);
      72  
      73  	if (ptr == NULL) {
      74  		const int saved_errno = errno;
      75  		free(p);
      76  		message_fatal("%s", strerror(saved_errno));
      77  	}
      78  
      79  	return ptr;
      80  }
      81  
      82  
      83  extern char *
      84  xstrdup(const char *src)
      85  {
      86  	assert(src != NULL);
      87  	const size_t size = strlen(src) + 1;
      88  	char *dest = xmalloc(size);
      89  	return memcpy(dest, src, size);
      90  }
      91  
      92  
      93  extern uint64_t
      94  str_to_uint64(const char *name, const char *value, uint64_t min, uint64_t max)
      95  {
      96  	uint64_t result = 0;
      97  
      98  	// Skip blanks.
      99  	while (*value == ' ' || *value == '\t')
     100  		++value;
     101  
     102  	// Accept special value "max". Supporting "min" doesn't seem useful.
     103  	if (strcmp(value, "max") == 0)
     104  		return max;
     105  
     106  	if (*value < '0' || *value > '9')
     107  		message_fatal(_("%s: Value is not a non-negative "
     108  				"decimal integer"), value);
     109  
     110  	do {
     111  		// Don't overflow.
     112  		if (result > UINT64_MAX / 10)
     113  			goto error;
     114  
     115  		result *= 10;
     116  
     117  		// Another overflow check
     118  		const uint32_t add = (uint32_t)(*value - '0');
     119  		if (UINT64_MAX - add < result)
     120  			goto error;
     121  
     122  		result += add;
     123  		++value;
     124  	} while (*value >= '0' && *value <= '9');
     125  
     126  	if (*value != '\0') {
     127  		// Look for suffix. Originally this supported both base-2
     128  		// and base-10, but since there seems to be little need
     129  		// for base-10 in this program, treat everything as base-2
     130  		// and also be more relaxed about the case of the first
     131  		// letter of the suffix.
     132  		uint64_t multiplier = 0;
     133  		if (*value == 'k' || *value == 'K')
     134  			multiplier = UINT64_C(1) << 10;
     135  		else if (*value == 'm' || *value == 'M')
     136  			multiplier = UINT64_C(1) << 20;
     137  		else if (*value == 'g' || *value == 'G')
     138  			multiplier = UINT64_C(1) << 30;
     139  
     140  		++value;
     141  
     142  		// Allow also e.g. Ki, KiB, and KB.
     143  		if (*value != '\0' && strcmp(value, "i") != 0
     144  				&& strcmp(value, "iB") != 0
     145  				&& strcmp(value, "B") != 0)
     146  			multiplier = 0;
     147  
     148  		if (multiplier == 0) {
     149  			message(V_ERROR, _("%s: Invalid multiplier suffix"),
     150  					value - 1);
     151  			message_fatal(_("Valid suffixes are `KiB' (2^10), "
     152  					"`MiB' (2^20), and `GiB' (2^30)."));
     153  		}
     154  
     155  		// Don't overflow here either.
     156  		if (result > UINT64_MAX / multiplier)
     157  			goto error;
     158  
     159  		result *= multiplier;
     160  	}
     161  
     162  	if (result < min || result > max)
     163  		goto error;
     164  
     165  	return result;
     166  
     167  error:
     168  	message_fatal(_("Value of the option `%s' must be in the range "
     169  				"[%" PRIu64 ", %" PRIu64 "]"),
     170  				name, min, max);
     171  }
     172  
     173  
     174  extern uint64_t
     175  round_up_to_mib(uint64_t n)
     176  {
     177  	return (n >> 20) + ((n & ((UINT32_C(1) << 20) - 1)) != 0);
     178  }
     179  
     180  
     181  extern const char *
     182  uint64_to_str(uint64_t value, uint32_t slot)
     183  {
     184  	assert(slot < ARRAY_SIZE(bufs));
     185  
     186  	check_thousand_sep(slot);
     187  
     188  	snprintf(bufs[slot], sizeof(bufs[slot]),
     189  			FORMAT_THOUSAND_SEP("%", PRIu64), value);
     190  
     191  	return bufs[slot];
     192  }
     193  
     194  
     195  extern const char *
     196  uint64_to_nicestr(uint64_t value, enum nicestr_unit unit_min,
     197  		enum nicestr_unit unit_max, bool always_also_bytes,
     198  		uint32_t slot)
     199  {
     200  	assert(unit_min <= unit_max);
     201  	assert(unit_max <= NICESTR_TIB);
     202  	assert(slot < ARRAY_SIZE(bufs));
     203  
     204  	check_thousand_sep(slot);
     205  
     206  	enum nicestr_unit unit = NICESTR_B;
     207  	char *pos = bufs[slot];
     208  	size_t left = sizeof(bufs[slot]);
     209  
     210  	if ((unit_min == NICESTR_B && value < 10000)
     211  			|| unit_max == NICESTR_B) {
     212  		// The value is shown as bytes.
     213  		my_snprintf(&pos, &left, FORMAT_THOUSAND_SEP("%", "u"),
     214  				(unsigned int)value);
     215  	} else {
     216  		// Scale the value to a nicer unit. Unless unit_min and
     217  		// unit_max limit us, we will show at most five significant
     218  		// digits with one decimal place.
     219  		double d = (double)(value);
     220  		do {
     221  			d /= 1024.0;
     222  			++unit;
     223  		} while (unit < unit_min || (d > 9999.9 && unit < unit_max));
     224  
     225  		my_snprintf(&pos, &left, FORMAT_THOUSAND_SEP("%", ".1f"), d);
     226  	}
     227  
     228  	static const char suffix[5][4] = { "B", "KiB", "MiB", "GiB", "TiB" };
     229  	my_snprintf(&pos, &left, " %s", suffix[unit]);
     230  
     231  	if (always_also_bytes && value >= 10000)
     232  		snprintf(pos, left, FORMAT_THOUSAND_SEP(" (%", PRIu64 " B)"),
     233  				value);
     234  
     235  	return bufs[slot];
     236  }
     237  
     238  
     239  extern void
     240  my_snprintf(char **pos, size_t *left, const char *fmt, ...)
     241  {
     242  	va_list ap;
     243  	va_start(ap, fmt);
     244  	const int len = vsnprintf(*pos, *left, fmt, ap);
     245  	va_end(ap);
     246  
     247  	// If an error occurred, we want the caller to think that the whole
     248  	// buffer was used. This way no more data will be written to the
     249  	// buffer. We don't need better error handling here, although it
     250  	// is possible that the result looks garbage on the terminal if
     251  	// e.g. an UTF-8 character gets split. That shouldn't (easily)
     252  	// happen though, because the buffers used have some extra room.
     253  	if (len < 0 || (size_t)(len) >= *left) {
     254  		*left = 0;
     255  	} else {
     256  		*pos += len;
     257  		*left -= (size_t)(len);
     258  	}
     259  
     260  	return;
     261  }
     262  
     263  
     264  extern bool
     265  is_tty_stdin(void)
     266  {
     267  	const bool ret = isatty(STDIN_FILENO);
     268  
     269  	if (ret)
     270  		message_error(_("Compressed data cannot be read from "
     271  				"a terminal"));
     272  
     273  	return ret;
     274  }
     275  
     276  
     277  extern bool
     278  is_tty_stdout(void)
     279  {
     280  	const bool ret = isatty(STDOUT_FILENO);
     281  
     282  	if (ret)
     283  		message_error(_("Compressed data cannot be written to "
     284  				"a terminal"));
     285  
     286  	return ret;
     287  }