(root)/
glibc-2.38/
sysdeps/
powerpc/
fpu/
e_sqrtf.c
       1  /* Single-precision floating point square root.
       2     Copyright (C) 1997-2023 Free Software Foundation, Inc.
       3     This file is part of the GNU C Library.
       4  
       5     The GNU C Library is free software; you can redistribute it and/or
       6     modify it under the terms of the GNU Lesser General Public
       7     License as published by the Free Software Foundation; either
       8     version 2.1 of the License, or (at your option) any later version.
       9  
      10     The GNU C Library is distributed in the hope that it will be useful,
      11     but WITHOUT ANY WARRANTY; without even the implied warranty of
      12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      13     Lesser General Public License for more details.
      14  
      15     You should have received a copy of the GNU Lesser General Public
      16     License along with the GNU C Library; if not, see
      17     <https://www.gnu.org/licenses/>.  */
      18  
      19  #include <math.h>
      20  #include <math_private.h>
      21  #include <fenv_libc.h>
      22  #include <libm-alias-finite.h>
      23  #include <math-use-builtins.h>
      24  
      25  float
      26  __ieee754_sqrtf (float x)
      27  {
      28  #if USE_SQRTF_BUILTIN
      29    return __builtin_sqrtf (x);
      30  #else
      31  /* The method is based on a description in
      32     Computation of elementary functions on the IBM RISC System/6000 processor,
      33     P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
      34     Basically, it consists of two interleaved Newton-Raphson approximations,
      35     one to find the actual square root, and one to find its reciprocal
      36     without the expense of a division operation.   The tricky bit here
      37     is the use of the POWER/PowerPC multiply-add operation to get the
      38     required accuracy with high speed.
      39  
      40     The argument reduction works by a combination of table lookup to
      41     obtain the initial guesses, and some careful modification of the
      42     generated guesses (which mostly runs on the integer unit, while the
      43     Newton-Raphson is running on the FPU).  */
      44  
      45    extern const float __t_sqrt[1024];
      46  
      47    if (x > 0)
      48      {
      49        if (x != INFINITY)
      50  	{
      51  	  /* Variables named starting with 's' exist in the
      52  	     argument-reduced space, so that 2 > sx >= 0.5,
      53  	     1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
      54  	     Variables named ending with 'i' are integer versions of
      55  	     floating-point values.  */
      56  	  float sx;		/* The value of which we're trying to find the square
      57  				   root.  */
      58  	  float sg, g;		/* Guess of the square root of x.  */
      59  	  float sd, d;		/* Difference between the square of the guess and x.  */
      60  	  float sy;		/* Estimate of 1/2g (overestimated by 1ulp).  */
      61  	  float sy2;		/* 2*sy */
      62  	  float e;		/* Difference between y*g and 1/2 (note that e==se).  */
      63  	  float shx;		/* == sx * fsg */
      64  	  float fsg;		/* sg*fsg == g.  */
      65  	  fenv_t fe;		/* Saved floating-point environment (stores rounding
      66  				   mode and whether the inexact exception is
      67  				   enabled).  */
      68  	  uint32_t xi, sxi, fsgi;
      69  	  const float *t_sqrt;
      70  
      71  	  GET_FLOAT_WORD (xi, x);
      72  	  fe = fegetenv_register ();
      73  	  relax_fenv_state ();
      74  	  sxi = (xi & 0x3fffffff) | 0x3f000000;
      75  	  SET_FLOAT_WORD (sx, sxi);
      76  	  t_sqrt = __t_sqrt + (xi >> (23 - 8 - 1) & 0x3fe);
      77  	  sg = t_sqrt[0];
      78  	  sy = t_sqrt[1];
      79  
      80  	  /* Here we have three Newton-Raphson iterations each of a
      81  	     division and a square root and the remainder of the
      82  	     argument reduction, all interleaved.   */
      83  	  sd = -__builtin_fmaf (sg, sg, -sx);
      84  	  fsgi = (xi + 0x40000000) >> 1 & 0x7f800000;
      85  	  sy2 = sy + sy;
      86  	  sg = __builtin_fmaf (sy, sd, sg);	/* 16-bit approximation to
      87  						   sqrt(sx). */
      88  	  e = -__builtin_fmaf (sy, sg, -0x1.0000020365653p-1);
      89  	  SET_FLOAT_WORD (fsg, fsgi);
      90  	  sd = -__builtin_fmaf (sg, sg, -sx);
      91  	  sy = __builtin_fmaf (e, sy2, sy);
      92  	  if ((xi & 0x7f800000) == 0)
      93  	    goto denorm;
      94  	  shx = sx * fsg;
      95  	  sg = __builtin_fmaf (sy, sd, sg);	/* 32-bit approximation to
      96  						   sqrt(sx), but perhaps
      97  						   rounded incorrectly.  */
      98  	  sy2 = sy + sy;
      99  	  g = sg * fsg;
     100  	  e = -__builtin_fmaf (sy, sg, -0x1.0000020365653p-1);
     101  	  d = -__builtin_fmaf (g, sg, -shx);
     102  	  sy = __builtin_fmaf (e, sy2, sy);
     103  	  fesetenv_register (fe);
     104  	  return __builtin_fmaf (sy, d, g);
     105  	denorm:
     106  	  /* For denormalised numbers, we normalise, calculate the
     107  	     square root, and return an adjusted result.  */
     108  	  fesetenv_register (fe);
     109  	  return __ieee754_sqrtf (x * 0x1p+48) * 0x1p-24;
     110  	}
     111      }
     112    else if (x < 0)
     113      {
     114        /* For some reason, some PowerPC32 processors don't implement
     115  	 FE_INVALID_SQRT.  */
     116  # ifdef FE_INVALID_SQRT
     117        feraiseexcept (FE_INVALID_SQRT);
     118  
     119        fenv_union_t u = { .fenv = fegetenv_register () };
     120        if ((u.l & FE_INVALID) == 0)
     121  # endif
     122  	feraiseexcept (FE_INVALID);
     123        x = NAN;
     124      }
     125    return f_washf (x);
     126  #endif /* USE_SQRTF_BUILTIN  */
     127  }
     128  libm_alias_finite (__ieee754_sqrtf, __sqrtf)