(root)/
glibc-2.38/
sysdeps/
powerpc/
fpu/
e_sqrt.c
       1  /* Double-precision floating point square root.
       2     Copyright (C) 1997-2023 Free Software Foundation, Inc.
       3     This file is part of the GNU C Library.
       4  
       5     The GNU C Library is free software; you can redistribute it and/or
       6     modify it under the terms of the GNU Lesser General Public
       7     License as published by the Free Software Foundation; either
       8     version 2.1 of the License, or (at your option) any later version.
       9  
      10     The GNU C Library is distributed in the hope that it will be useful,
      11     but WITHOUT ANY WARRANTY; without even the implied warranty of
      12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      13     Lesser General Public License for more details.
      14  
      15     You should have received a copy of the GNU Lesser General Public
      16     License along with the GNU C Library; if not, see
      17     <https://www.gnu.org/licenses/>.  */
      18  
      19  #include <math.h>
      20  #include <math_private.h>
      21  #include <fenv_libc.h>
      22  #include <libm-alias-finite.h>
      23  #include <math-use-builtins.h>
      24  
      25  double
      26  __ieee754_sqrt (double x)
      27  {
      28  #if USE_SQRT_BUILTIN
      29    return __builtin_sqrt (x);
      30  #else
      31  /* The method is based on a description in
      32     Computation of elementary functions on the IBM RISC System/6000 processor,
      33     P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
      34     Basically, it consists of two interleaved Newton-Raphson approximations,
      35     one to find the actual square root, and one to find its reciprocal
      36     without the expense of a division operation.   The tricky bit here
      37     is the use of the POWER/PowerPC multiply-add operation to get the
      38     required accuracy with high speed.
      39  
      40     The argument reduction works by a combination of table lookup to
      41     obtain the initial guesses, and some careful modification of the
      42     generated guesses (which mostly runs on the integer unit, while the
      43     Newton-Raphson is running on the FPU).  */
      44  
      45    extern const float __t_sqrt[1024];
      46  
      47    if (x > 0)
      48      {
      49        /* schedule the EXTRACT_WORDS to get separation between the store
      50  	 and the load.  */
      51        ieee_double_shape_type ew_u;
      52        ieee_double_shape_type iw_u;
      53        ew_u.value = (x);
      54        if (x != INFINITY)
      55  	{
      56  	  /* Variables named starting with 's' exist in the
      57  	     argument-reduced space, so that 2 > sx >= 0.5,
      58  	     1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
      59  	     Variables named ending with 'i' are integer versions of
      60  	     floating-point values.  */
      61  	  double sx;	/* The value of which we're trying to find the
      62  			   square root.  */
      63  	  double sg, g;	/* Guess of the square root of x.  */
      64  	  double sd, d;	/* Difference between the square of the guess and x.  */
      65  	  double sy;	/* Estimate of 1/2g (overestimated by 1ulp).  */
      66  	  double sy2;	/* 2*sy */
      67  	  double e;	/* Difference between y*g and 1/2 (se = e * fsy).  */
      68  	  double shx;	/* == sx * fsg */
      69  	  double fsg;	/* sg*fsg == g.  */
      70  	  fenv_t fe;	/* Saved floating-point environment (stores rounding
      71  			   mode and whether the inexact exception is
      72  			   enabled).  */
      73  	  uint32_t xi0, xi1, sxi, fsgi;
      74  	  const float *t_sqrt;
      75  
      76  	  fe = fegetenv_register ();
      77  	  /* complete the EXTRACT_WORDS (xi0,xi1,x) operation.  */
      78  	  xi0 = ew_u.parts.msw;
      79  	  xi1 = ew_u.parts.lsw;
      80  	  relax_fenv_state ();
      81  	  sxi = (xi0 & 0x3fffffff) | 0x3fe00000;
      82  	  /* schedule the INSERT_WORDS (sx, sxi, xi1) to get separation
      83  	     between the store and the load.  */
      84  	  iw_u.parts.msw = sxi;
      85  	  iw_u.parts.lsw = xi1;
      86  	  t_sqrt = __t_sqrt + (xi0 >> (52 - 32 - 8 - 1) & 0x3fe);
      87  	  sg = t_sqrt[0];
      88  	  sy = t_sqrt[1];
      89  	  /* complete the INSERT_WORDS (sx, sxi, xi1) operation.  */
      90  	  sx = iw_u.value;
      91  
      92  	  /* Here we have three Newton-Raphson iterations each of a
      93  	     division and a square root and the remainder of the
      94  	     argument reduction, all interleaved.   */
      95  	  sd = -__builtin_fma (sg, sg, -sx);
      96  	  fsgi = (xi0 + 0x40000000) >> 1 & 0x7ff00000;
      97  	  sy2 = sy + sy;
      98  	  sg = __builtin_fma (sy, sd, sg);	/* 16-bit approximation to
      99  						   sqrt(sx). */
     100  
     101  	  /* schedule the INSERT_WORDS (fsg, fsgi, 0) to get separation
     102  	     between the store and the load.  */
     103  	  INSERT_WORDS (fsg, fsgi, 0);
     104  	  iw_u.parts.msw = fsgi;
     105  	  iw_u.parts.lsw = (0);
     106  	  e = -__builtin_fma (sy, sg, -0x1.0000000000001p-1);
     107  	  sd = -__builtin_fma (sg, sg, -sx);
     108  	  if ((xi0 & 0x7ff00000) == 0)
     109  	    goto denorm;
     110  	  sy = __builtin_fma (e, sy2, sy);
     111  	  sg = __builtin_fma (sy, sd, sg);	/* 32-bit approximation to
     112  						   sqrt(sx).  */
     113  	  sy2 = sy + sy;
     114  	  /* complete the INSERT_WORDS (fsg, fsgi, 0) operation.  */
     115  	  fsg = iw_u.value;
     116  	  e = -__builtin_fma (sy, sg, -0x1.0000000000001p-1);
     117  	  sd = -__builtin_fma (sg, sg, -sx);
     118  	  sy = __builtin_fma (e, sy2, sy);
     119  	  shx = sx * fsg;
     120  	  sg = __builtin_fma (sy, sd, sg);	/* 64-bit approximation to
     121  						   sqrt(sx), but perhaps
     122  						   rounded incorrectly.  */
     123  	  sy2 = sy + sy;
     124  	  g = sg * fsg;
     125  	  e = -__builtin_fma (sy, sg, -0x1.0000000000001p-1);
     126  	  d = -__builtin_fma (g, sg, -shx);
     127  	  sy = __builtin_fma (e, sy2, sy);
     128  	  fesetenv_register (fe);
     129  	  return __builtin_fma (sy, d, g);
     130  	denorm:
     131  	  /* For denormalised numbers, we normalise, calculate the
     132  	     square root, and return an adjusted result.  */
     133  	  fesetenv_register (fe);
     134  	  return __ieee754_sqrt (x * 0x1p+108f) * 0x1p-54f;
     135  	}
     136      }
     137    else if (x < 0)
     138      {
     139        /* For some reason, some PowerPC32 processors don't implement
     140  	 FE_INVALID_SQRT.  */
     141  # ifdef FE_INVALID_SQRT
     142        __feraiseexcept (FE_INVALID_SQRT);
     143  
     144        fenv_union_t u = { .fenv = fegetenv_register () };
     145        if ((u.l & FE_INVALID) == 0)
     146  # endif
     147  	__feraiseexcept (FE_INVALID);
     148        x = NAN;
     149      }
     150    return f_wash (x);
     151  #endif /* USE_SQRT_BUILTIN  */
     152  }
     153  
     154  libm_alias_finite (__ieee754_sqrt, __sqrt)