(root)/
glibc-2.38/
sysdeps/
ieee754/
ldbl-96/
k_tanl.c
       1  /*
       2   * ====================================================
       3   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
       4   *
       5   * Developed at SunPro, a Sun Microsystems, Inc. business.
       6   * Permission to use, copy, modify, and distribute this
       7   * software is freely granted, provided that this notice
       8   * is preserved.
       9   * ====================================================
      10   */
      11  
      12  /*
      13    Long double expansions are
      14    Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
      15    and are incorporated herein by permission of the author.  The author
      16    reserves the right to distribute this material elsewhere under different
      17    copying permissions.  These modifications are distributed here under
      18    the following terms:
      19  
      20      This library is free software; you can redistribute it and/or
      21      modify it under the terms of the GNU Lesser General Public
      22      License as published by the Free Software Foundation; either
      23      version 2.1 of the License, or (at your option) any later version.
      24  
      25      This library is distributed in the hope that it will be useful,
      26      but WITHOUT ANY WARRANTY; without even the implied warranty of
      27      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      28      Lesser General Public License for more details.
      29  
      30      You should have received a copy of the GNU Lesser General Public
      31      License along with this library; if not, see
      32      <https://www.gnu.org/licenses/>.  */
      33  
      34  /* __kernel_tanl( x, y, k )
      35   * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
      36   * Input x is assumed to be bounded by ~pi/4 in magnitude.
      37   * Input y is the tail of x.
      38   * Input k indicates whether tan (if k=1) or
      39   * -1/tan (if k= -1) is returned.
      40   *
      41   * Algorithm
      42   *	1. Since tan(-x) = -tan(x), we need only to consider positive x.
      43   *	2. if x < 2^-33, return x with inexact if x!=0.
      44   *	3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
      45   *          on [0,0.67433].
      46   *
      47   *	   Note: tan(x+y) = tan(x) + tan'(x)*y
      48   *		          ~ tan(x) + (1+x*x)*y
      49   *	   Therefore, for better accuracy in computing tan(x+y), let
      50   *		r = x^3 * R(x^2)
      51   *	   then
      52   *		tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
      53   *
      54   *      4. For x in [0.67433,pi/4],  let y = pi/4 - x, then
      55   *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
      56   *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
      57   */
      58  
      59  #include <float.h>
      60  #include <math.h>
      61  #include <math_private.h>
      62  #include <math-underflow.h>
      63  #include <libc-diag.h>
      64  
      65  static const long double
      66    one = 1.0L,
      67    pio4hi = 0xc.90fdaa22168c235p-4L,
      68    pio4lo = -0x3.b399d747f23e32ecp-68L,
      69  
      70    /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
      71       0 <= x <= 0.6743316650390625
      72       Peak relative error 8.0e-36  */
      73   TH =  3.333333333333333333333333333333333333333E-1L,
      74   T0 = -1.813014711743583437742363284336855889393E7L,
      75   T1 =  1.320767960008972224312740075083259247618E6L,
      76   T2 = -2.626775478255838182468651821863299023956E4L,
      77   T3 =  1.764573356488504935415411383687150199315E2L,
      78   T4 = -3.333267763822178690794678978979803526092E-1L,
      79  
      80   U0 = -1.359761033807687578306772463253710042010E8L,
      81   U1 =  6.494370630656893175666729313065113194784E7L,
      82   U2 = -4.180787672237927475505536849168729386782E6L,
      83   U3 =  8.031643765106170040139966622980914621521E4L,
      84   U4 = -5.323131271912475695157127875560667378597E2L;
      85    /* 1.000000000000000000000000000000000000000E0 */
      86  
      87  
      88  long double
      89  __kernel_tanl (long double x, long double y, int iy)
      90  {
      91    long double z, r, v, w, s;
      92    long double absx = fabsl (x);
      93    int sign;
      94  
      95    if (absx < 0x1p-33)
      96      {
      97        if ((int) x == 0)
      98  	{			/* generate inexact */
      99  	  if (x == 0 && iy == -1)
     100  	    return one / fabsl (x);
     101  	  else if (iy == 1)
     102  	    {
     103  	      math_check_force_underflow_nonneg (absx);
     104  	      return x;
     105  	    }
     106  	  else
     107  	    return -one / x;
     108  	}
     109      }
     110    if (absx >= 0.6743316650390625L)
     111      {
     112        if (signbit (x))
     113  	{
     114  	  x = -x;
     115  	  y = -y;
     116  	  sign = -1;
     117  	}
     118        else
     119  	sign = 1;
     120        z = pio4hi - x;
     121        w = pio4lo - y;
     122        x = z + w;
     123        y = 0.0;
     124      }
     125    z = x * x;
     126    r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
     127    v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
     128    r = r / v;
     129  
     130    s = z * x;
     131    r = y + z * (s * r + y);
     132    r += TH * s;
     133    w = x + r;
     134    if (absx >= 0.6743316650390625L)
     135      {
     136        v = (long double) iy;
     137        w = (v - 2.0 * (x - (w * w / (w + v) - r)));
     138        /* SIGN is set for arguments that reach this code, but not
     139          otherwise, resulting in warnings that it may be used
     140          uninitialized although in the cases where it is used it has
     141          always been set.  */
     142        DIAG_PUSH_NEEDS_COMMENT;
     143        DIAG_IGNORE_NEEDS_COMMENT (4.8, "-Wmaybe-uninitialized");
     144        if (sign < 0)
     145  	w = -w;
     146        DIAG_POP_NEEDS_COMMENT;
     147        return w;
     148      }
     149    if (iy == 1)
     150      return w;
     151    else
     152      return -1.0 / (x + r);
     153  }