(root)/
glibc-2.38/
sysdeps/
ieee754/
ldbl-96/
k_sinl.c
       1  /* Quad-precision floating point sine on <-pi/4,pi/4>.
       2     Copyright (C) 1999-2023 Free Software Foundation, Inc.
       3     This file is part of the GNU C Library.
       4  
       5     The GNU C Library is free software; you can redistribute it and/or
       6     modify it under the terms of the GNU Lesser General Public
       7     License as published by the Free Software Foundation; either
       8     version 2.1 of the License, or (at your option) any later version.
       9  
      10     The GNU C Library is distributed in the hope that it will be useful,
      11     but WITHOUT ANY WARRANTY; without even the implied warranty of
      12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      13     Lesser General Public License for more details.
      14  
      15     You should have received a copy of the GNU Lesser General Public
      16     License along with the GNU C Library; if not, see
      17     <https://www.gnu.org/licenses/>.  */
      18  
      19  /* The polynomials have not been optimized for extended-precision and
      20     may contain more terms than needed.  */
      21  
      22  #include <float.h>
      23  #include <math.h>
      24  #include <math_private.h>
      25  #include <math-underflow.h>
      26  
      27  /* The polynomials have not been optimized for extended-precision and
      28     may contain more terms than needed.  */
      29  
      30  static const long double c[] = {
      31  #define ONE c[0]
      32   1.00000000000000000000000000000000000E+00L,
      33  
      34  /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
      35     x in <0,1/256>  */
      36  #define SCOS1 c[1]
      37  #define SCOS2 c[2]
      38  #define SCOS3 c[3]
      39  #define SCOS4 c[4]
      40  #define SCOS5 c[5]
      41  -5.00000000000000000000000000000000000E-01L,
      42   4.16666666666666666666666666556146073E-02L,
      43  -1.38888888888888888888309442601939728E-03L,
      44   2.48015873015862382987049502531095061E-05L,
      45  -2.75573112601362126593516899592158083E-07L,
      46  
      47  /* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 )
      48     x in <0,0.1484375>  */
      49  #define SIN1 c[6]
      50  #define SIN2 c[7]
      51  #define SIN3 c[8]
      52  #define SIN4 c[9]
      53  #define SIN5 c[10]
      54  #define SIN6 c[11]
      55  #define SIN7 c[12]
      56  #define SIN8 c[13]
      57  -1.66666666666666666666666666666666538e-01L,
      58   8.33333333333333333333333333307532934e-03L,
      59  -1.98412698412698412698412534478712057e-04L,
      60   2.75573192239858906520896496653095890e-06L,
      61  -2.50521083854417116999224301266655662e-08L,
      62   1.60590438367608957516841576404938118e-10L,
      63  -7.64716343504264506714019494041582610e-13L,
      64   2.81068754939739570236322404393398135e-15L,
      65  
      66  /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
      67     x in <0,1/256>  */
      68  #define SSIN1 c[14]
      69  #define SSIN2 c[15]
      70  #define SSIN3 c[16]
      71  #define SSIN4 c[17]
      72  #define SSIN5 c[18]
      73  -1.66666666666666666666666666666666659E-01L,
      74   8.33333333333333333333333333146298442E-03L,
      75  -1.98412698412698412697726277416810661E-04L,
      76   2.75573192239848624174178393552189149E-06L,
      77  -2.50521016467996193495359189395805639E-08L,
      78  };
      79  
      80  #define SINCOSL_COS_HI 0
      81  #define SINCOSL_COS_LO 1
      82  #define SINCOSL_SIN_HI 2
      83  #define SINCOSL_SIN_LO 3
      84  extern const long double __sincosl_table[];
      85  
      86  long double
      87  __kernel_sinl(long double x, long double y, int iy)
      88  {
      89    long double absx, h, l, z, sin_l, cos_l_m1;
      90    int index;
      91  
      92    absx = fabsl (x);
      93    if (absx < 0.1484375L)
      94      {
      95        /* Argument is small enough to approximate it by a Chebyshev
      96  	 polynomial of degree 17.  */
      97        if (absx < 0x1p-33L)
      98  	{
      99  	  math_check_force_underflow (x);
     100  	  if (!((int)x)) return x;	/* generate inexact */
     101  	}
     102        z = x * x;
     103        return x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+
     104  		       z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8)))))))));
     105      }
     106    else
     107      {
     108        /* So that we don't have to use too large polynomial,  we find
     109  	 l and h such that x = l + h,  where fabsl(l) <= 1.0/256 with 83
     110  	 possible values for h.  We look up cosl(h) and sinl(h) in
     111  	 pre-computed tables,  compute cosl(l) and sinl(l) using a
     112  	 Chebyshev polynomial of degree 10(11) and compute
     113  	 sinl(h+l) = sinl(h)cosl(l) + cosl(h)sinl(l).  */
     114        index = (int) (128 * (absx - (0.1484375L - 1.0L / 256.0L)));
     115        h = 0.1484375L + index / 128.0;
     116        index *= 4;
     117        if (iy)
     118  	l = (x < 0 ? -y : y) - (h - absx);
     119        else
     120  	l = absx - h;
     121        z = l * l;
     122        sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5)))));
     123        cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5))));
     124        z = __sincosl_table [index + SINCOSL_SIN_HI]
     125  	  + (__sincosl_table [index + SINCOSL_SIN_LO]
     126  	     + (__sincosl_table [index + SINCOSL_SIN_HI] * cos_l_m1)
     127  	     + (__sincosl_table [index + SINCOSL_COS_HI] * sin_l));
     128        return (x < 0) ? -z : z;
     129      }
     130  }