1  /* Extended-precision floating point cosine on <-pi/4,pi/4>.
       2     Copyright (C) 1999-2023 Free Software Foundation, Inc.
       3     This file is part of the GNU C Library.
       4  
       5     The GNU C Library is free software; you can redistribute it and/or
       6     modify it under the terms of the GNU Lesser General Public
       7     License as published by the Free Software Foundation; either
       8     version 2.1 of the License, or (at your option) any later version.
       9  
      10     The GNU C Library is distributed in the hope that it will be useful,
      11     but WITHOUT ANY WARRANTY; without even the implied warranty of
      12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      13     Lesser General Public License for more details.
      14  
      15     You should have received a copy of the GNU Lesser General Public
      16     License along with the GNU C Library; if not, see
      17     <https://www.gnu.org/licenses/>.  */
      18  
      19  #include <math.h>
      20  #include <math_private.h>
      21  
      22  /* The polynomials have not been optimized for extended-precision and
      23     may contain more terms than needed.  */
      24  
      25  static const long double c[] = {
      26  #define ONE c[0]
      27   1.00000000000000000000000000000000000E+00L,
      28  
      29  /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
      30     x in <0,1/256>  */
      31  #define SCOS1 c[1]
      32  #define SCOS2 c[2]
      33  #define SCOS3 c[3]
      34  #define SCOS4 c[4]
      35  #define SCOS5 c[5]
      36  -5.00000000000000000000000000000000000E-01L,
      37   4.16666666666666666666666666556146073E-02L,
      38  -1.38888888888888888888309442601939728E-03L,
      39   2.48015873015862382987049502531095061E-05L,
      40  -2.75573112601362126593516899592158083E-07L,
      41  
      42  /* cos x ~ ONE + x^2 ( COS1 + COS2 * x^2 + ... + COS7 * x^12 + COS8 * x^14 )
      43     x in <0,0.1484375>  */
      44  #define COS1 c[6]
      45  #define COS2 c[7]
      46  #define COS3 c[8]
      47  #define COS4 c[9]
      48  #define COS5 c[10]
      49  #define COS6 c[11]
      50  #define COS7 c[12]
      51  #define COS8 c[13]
      52  -4.99999999999999999999999999999999759E-01L,
      53   4.16666666666666666666666666651287795E-02L,
      54  -1.38888888888888888888888742314300284E-03L,
      55   2.48015873015873015867694002851118210E-05L,
      56  -2.75573192239858811636614709689300351E-07L,
      57   2.08767569877762248667431926878073669E-09L,
      58  -1.14707451049343817400420280514614892E-11L,
      59   4.77810092804389587579843296923533297E-14L,
      60  
      61  /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
      62     x in <0,1/256>  */
      63  #define SSIN1 c[14]
      64  #define SSIN2 c[15]
      65  #define SSIN3 c[16]
      66  #define SSIN4 c[17]
      67  #define SSIN5 c[18]
      68  -1.66666666666666666666666666666666659E-01L,
      69   8.33333333333333333333333333146298442E-03L,
      70  -1.98412698412698412697726277416810661E-04L,
      71   2.75573192239848624174178393552189149E-06L,
      72  -2.50521016467996193495359189395805639E-08L,
      73  };
      74  
      75  #define SINCOSL_COS_HI 0
      76  #define SINCOSL_COS_LO 1
      77  #define SINCOSL_SIN_HI 2
      78  #define SINCOSL_SIN_LO 3
      79  extern const long double __sincosl_table[];
      80  
      81  long double
      82  __kernel_cosl(long double x, long double y)
      83  {
      84    long double h, l, z, sin_l, cos_l_m1;
      85    int index;
      86  
      87    if (signbit (x))
      88      {
      89        x = -x;
      90        y = -y;
      91      }
      92    if (x < 0.1484375L)
      93      {
      94        /* Argument is small enough to approximate it by a Chebyshev
      95  	 polynomial of degree 16.  */
      96        if (x < 0x1p-33L)
      97  	if (!((int)x)) return ONE;	/* generate inexact */
      98        z = x * x;
      99        return ONE + (z*(COS1+z*(COS2+z*(COS3+z*(COS4+
     100  		    z*(COS5+z*(COS6+z*(COS7+z*COS8))))))));
     101      }
     102    else
     103      {
     104        /* So that we don't have to use too large polynomial,  we find
     105  	 l and h such that x = l + h,  where fabsl(l) <= 1.0/256 with 83
     106  	 possible values for h.  We look up cosl(h) and sinl(h) in
     107  	 pre-computed tables,  compute cosl(l) and sinl(l) using a
     108  	 Chebyshev polynomial of degree 10(11) and compute
     109  	 cosl(h+l) = cosl(h)cosl(l) - sinl(h)sinl(l).  */
     110        index = (int) (128 * (x - (0.1484375L - 1.0L / 256.0L)));
     111        h = 0.1484375L + index / 128.0;
     112        index *= 4;
     113        l = y - (h - x);
     114        z = l * l;
     115        sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5)))));
     116        cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5))));
     117        return __sincosl_table [index + SINCOSL_COS_HI]
     118  	     + (__sincosl_table [index + SINCOSL_COS_LO]
     119  		- (__sincosl_table [index + SINCOSL_SIN_HI] * sin_l
     120  		   - __sincosl_table [index + SINCOSL_COS_HI] * cos_l_m1));
     121      }
     122  }