(root)/
glibc-2.38/
sysdeps/
ieee754/
ldbl-96/
e_asinl.c
       1  /*
       2   * ====================================================
       3   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
       4   *
       5   * Developed at SunPro, a Sun Microsystems, Inc. business.
       6   * Permission to use, copy, modify, and distribute this
       7   * software is freely granted, provided that this notice
       8   * is preserved.
       9   * ====================================================
      10   */
      11  
      12  /*
      13    Long double expansions are
      14    Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
      15    and are incorporated herein by permission of the author.  The author
      16    reserves the right to distribute this material elsewhere under different
      17    copying permissions.  These modifications are distributed here under
      18    the following terms:
      19  
      20      This library is free software; you can redistribute it and/or
      21      modify it under the terms of the GNU Lesser General Public
      22      License as published by the Free Software Foundation; either
      23      version 2.1 of the License, or (at your option) any later version.
      24  
      25      This library is distributed in the hope that it will be useful,
      26      but WITHOUT ANY WARRANTY; without even the implied warranty of
      27      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      28      Lesser General Public License for more details.
      29  
      30      You should have received a copy of the GNU Lesser General Public
      31      License along with this library; if not, see
      32      <https://www.gnu.org/licenses/>.  */
      33  
      34  /* __ieee754_asin(x)
      35   * Method :
      36   *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
      37   *	we approximate asin(x) on [0,0.5] by
      38   *		asin(x) = x + x*x^2*R(x^2)
      39   *
      40   *	For x in [0.5,1]
      41   *		asin(x) = pi/2-2*asin(sqrt((1-x)/2))
      42   *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
      43   *	then for x>0.98
      44   *		asin(x) = pi/2 - 2*(s+s*z*R(z))
      45   *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
      46   *	For x<=0.98, let pio4_hi = pio2_hi/2, then
      47   *		f = hi part of s;
      48   *		c = sqrt(z) - f = (z-f*f)/(s+f)		...f+c=sqrt(z)
      49   *	and
      50   *		asin(x) = pi/2 - 2*(s+s*z*R(z))
      51   *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
      52   *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
      53   *
      54   * Special cases:
      55   *	if x is NaN, return x itself;
      56   *	if |x|>1, return NaN with invalid signal.
      57   *
      58   */
      59  
      60  
      61  #include <float.h>
      62  #include <math.h>
      63  #include <math_private.h>
      64  #include <math-underflow.h>
      65  #include <libm-alias-finite.h>
      66  
      67  static const long double
      68    one = 1.0L,
      69    huge = 1.0e+4932L,
      70    pio2_hi = 0x1.921fb54442d1846ap+0L, /* pi/2 rounded to nearest to 64
      71  					 bits.  */
      72    pio2_lo = -0x7.6733ae8fe47c65d8p-68L, /* pi/2 - pio2_hi rounded to
      73  					   nearest to 64 bits.  */
      74    pio4_hi = 0xc.90fdaa22168c235p-4L, /* pi/4 rounded to nearest to 64
      75  					bits.  */
      76  
      77  	/* coefficient for R(x^2) */
      78  
      79    /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
      80       0 <= x <= 0.5
      81       peak relative error 1.9e-21  */
      82    pS0 =  -1.008714657938491626019651170502036851607E1L,
      83    pS1 =   2.331460313214179572063441834101394865259E1L,
      84    pS2 =  -1.863169762159016144159202387315381830227E1L,
      85    pS3 =   5.930399351579141771077475766877674661747E0L,
      86    pS4 =  -6.121291917696920296944056882932695185001E-1L,
      87    pS5 =   3.776934006243367487161248678019350338383E-3L,
      88  
      89    qS0 =  -6.052287947630949712886794360635592886517E1L,
      90    qS1 =   1.671229145571899593737596543114258558503E2L,
      91    qS2 =  -1.707840117062586426144397688315411324388E2L,
      92    qS3 =   7.870295154902110425886636075950077640623E1L,
      93    qS4 =  -1.568433562487314651121702982333303458814E1L;
      94      /* 1.000000000000000000000000000000000000000E0 */
      95  
      96  long double
      97  __ieee754_asinl (long double x)
      98  {
      99    long double t, w, p, q, c, r, s;
     100    int32_t ix;
     101    uint32_t se, i0, i1, k;
     102  
     103    GET_LDOUBLE_WORDS (se, i0, i1, x);
     104    ix = se & 0x7fff;
     105    ix = (ix << 16) | (i0 >> 16);
     106    if (ix >= 0x3fff8000)
     107      {				/* |x|>= 1 */
     108        if (ix == 0x3fff8000 && ((i0 - 0x80000000) | i1) == 0)
     109  	/* asin(1)=+-pi/2 with inexact */
     110  	return x * pio2_hi + x * pio2_lo;
     111        return (x - x) / (x - x);	/* asin(|x|>1) is NaN */
     112      }
     113    else if (ix < 0x3ffe8000)
     114      {				/* |x|<0.5 */
     115        if (ix < 0x3fde8000)
     116  	{			/* if |x| < 2**-33 */
     117  	  math_check_force_underflow (x);
     118  	  if (huge + x > one)
     119  	    return x;		/* return x with inexact if x!=0 */
     120  	}
     121        else
     122  	{
     123  	  t = x * x;
     124  	  p =
     125  	    t * (pS0 +
     126  		 t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
     127  	  q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t))));
     128  	  w = p / q;
     129  	  return x + x * w;
     130  	}
     131      }
     132    /* 1> |x|>= 0.5 */
     133    w = one - fabsl (x);
     134    t = w * 0.5;
     135    p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
     136    q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t))));
     137    s = sqrtl (t);
     138    if (ix >= 0x3ffef999)
     139      {				/* if |x| > 0.975 */
     140        w = p / q;
     141        t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
     142      }
     143    else
     144      {
     145        GET_LDOUBLE_WORDS (k, i0, i1, s);
     146        i1 = 0;
     147        SET_LDOUBLE_WORDS (w,k,i0,i1);
     148        c = (t - w * w) / (s + w);
     149        r = p / q;
     150        p = 2.0 * s * r - (pio2_lo - 2.0 * c);
     151        q = pio4_hi - 2.0 * w;
     152        t = pio4_hi - (p - q);
     153      }
     154    if ((se & 0x8000) == 0)
     155      return t;
     156    else
     157      return -t;
     158  }
     159  libm_alias_finite (__ieee754_asinl, __asinl)