(root)/
glibc-2.38/
sysdeps/
ieee754/
ldbl-128ibm/
k_sinl.c
       1  /* Quad-precision floating point sine on <-pi/4,pi/4>.
       2     Copyright (C) 1999-2023 Free Software Foundation, Inc.
       3     This file is part of the GNU C Library.
       4  
       5     The GNU C Library is free software; you can redistribute it and/or
       6     modify it under the terms of the GNU Lesser General Public
       7     License as published by the Free Software Foundation; either
       8     version 2.1 of the License, or (at your option) any later version.
       9  
      10     The GNU C Library is distributed in the hope that it will be useful,
      11     but WITHOUT ANY WARRANTY; without even the implied warranty of
      12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      13     Lesser General Public License for more details.
      14  
      15     You should have received a copy of the GNU Lesser General Public
      16     License along with the GNU C Library; if not, see
      17     <https://www.gnu.org/licenses/>.  */
      18  
      19  #include <float.h>
      20  #include <math.h>
      21  #include <math_private.h>
      22  #include <math-underflow.h>
      23  
      24  static const long double c[] = {
      25  #define ONE c[0]
      26   1.00000000000000000000000000000000000E+00L, /* 3fff0000000000000000000000000000 */
      27  
      28  /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
      29     x in <0,1/256>  */
      30  #define SCOS1 c[1]
      31  #define SCOS2 c[2]
      32  #define SCOS3 c[3]
      33  #define SCOS4 c[4]
      34  #define SCOS5 c[5]
      35  -5.00000000000000000000000000000000000E-01L, /* bffe0000000000000000000000000000 */
      36   4.16666666666666666666666666556146073E-02L, /* 3ffa5555555555555555555555395023 */
      37  -1.38888888888888888888309442601939728E-03L, /* bff56c16c16c16c16c16a566e42c0375 */
      38   2.48015873015862382987049502531095061E-05L, /* 3fefa01a01a019ee02dcf7da2d6d5444 */
      39  -2.75573112601362126593516899592158083E-07L, /* bfe927e4f5dce637cb0b54908754bde0 */
      40  
      41  /* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 )
      42     x in <0,0.1484375>  */
      43  #define SIN1 c[6]
      44  #define SIN2 c[7]
      45  #define SIN3 c[8]
      46  #define SIN4 c[9]
      47  #define SIN5 c[10]
      48  #define SIN6 c[11]
      49  #define SIN7 c[12]
      50  #define SIN8 c[13]
      51  -1.66666666666666666666666666666666538e-01L, /* bffc5555555555555555555555555550 */
      52   8.33333333333333333333333333307532934e-03L, /* 3ff811111111111111111111110e7340 */
      53  -1.98412698412698412698412534478712057e-04L, /* bff2a01a01a01a01a01a019e7a626296 */
      54   2.75573192239858906520896496653095890e-06L, /* 3fec71de3a556c7338fa38527474b8f5 */
      55  -2.50521083854417116999224301266655662e-08L, /* bfe5ae64567f544e16c7de65c2ea551f */
      56   1.60590438367608957516841576404938118e-10L, /* 3fde6124613a811480538a9a41957115 */
      57  -7.64716343504264506714019494041582610e-13L, /* bfd6ae7f3d5aef30c7bc660b060ef365 */
      58   2.81068754939739570236322404393398135e-15L, /* 3fce9510115aabf87aceb2022a9a9180 */
      59  
      60  /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
      61     x in <0,1/256>  */
      62  #define SSIN1 c[14]
      63  #define SSIN2 c[15]
      64  #define SSIN3 c[16]
      65  #define SSIN4 c[17]
      66  #define SSIN5 c[18]
      67  -1.66666666666666666666666666666666659E-01L, /* bffc5555555555555555555555555555 */
      68   8.33333333333333333333333333146298442E-03L, /* 3ff81111111111111111111110fe195d */
      69  -1.98412698412698412697726277416810661E-04L, /* bff2a01a01a01a01a019e7121e080d88 */
      70   2.75573192239848624174178393552189149E-06L, /* 3fec71de3a556c640c6aaa51aa02ab41 */
      71  -2.50521016467996193495359189395805639E-08L, /* bfe5ae644ee90c47dc71839de75b2787 */
      72  };
      73  
      74  #define SINCOSL_COS_HI 0
      75  #define SINCOSL_COS_LO 1
      76  #define SINCOSL_SIN_HI 2
      77  #define SINCOSL_SIN_LO 3
      78  extern const long double __sincosl_table[];
      79  
      80  long double
      81  __kernel_sinl(long double x, long double y, int iy)
      82  {
      83    long double h, l, z, sin_l, cos_l_m1;
      84    int64_t ix;
      85    uint32_t tix, hix, index;
      86    double xhi, hhi;
      87  
      88    xhi = ldbl_high (x);
      89    EXTRACT_WORDS64 (ix, xhi);
      90    tix = ((uint64_t)ix) >> 32;
      91    tix &= ~0x80000000;			/* tix = |x|'s high 32 bits */
      92    if (tix < 0x3fc30000)			/* |x| < 0.1484375 */
      93      {
      94        /* Argument is small enough to approximate it by a Chebyshev
      95  	 polynomial of degree 17.  */
      96        if (tix < 0x3c600000)		/* |x| < 2^-57 */
      97  	{
      98  	  math_check_force_underflow (x);
      99  	  if (!((int)x)) return x;	/* generate inexact */
     100  	}
     101        z = x * x;
     102        return x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+
     103  		       z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8)))))))));
     104      }
     105    else
     106      {
     107        /* So that we don't have to use too large polynomial,  we find
     108  	 l and h such that x = l + h,  where fabsl(l) <= 1.0/256 with 83
     109  	 possible values for h.  We look up cosl(h) and sinl(h) in
     110  	 pre-computed tables,  compute cosl(l) and sinl(l) using a
     111  	 Chebyshev polynomial of degree 10(11) and compute
     112  	 sinl(h+l) = sinl(h)cosl(l) + cosl(h)sinl(l).  */
     113        int six = tix;
     114        tix = ((six - 0x3ff00000) >> 4) + 0x3fff0000;
     115        index = 0x3ffe - (tix >> 16);
     116        hix = (tix + (0x200 << index)) & (0xfffffc00 << index);
     117        x = fabsl (x);
     118        switch (index)
     119  	{
     120  	case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break;
     121  	case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break;
     122  	default:
     123  	case 2: index = (hix - 0x3ffc3000) >> 10; break;
     124  	}
     125        hix = (hix << 4) & 0x3fffffff;
     126  /*
     127      The following should work for double but generates the wrong index.
     128      For now the code above converts double to ieee extended to compute
     129      the index back to double for the h value.
     130  
     131        index = 0x3fe - (tix >> 20);
     132        hix = (tix + (0x2000 << index)) & (0xffffc000 << index);
     133        x = fabsl (x);
     134        switch (index)
     135  	{
     136  	case 0: index = ((45 << 14) + hix - 0x3fe00000) >> 12; break;
     137  	case 1: index = ((13 << 15) + hix - 0x3fd00000) >> 13; break;
     138  	default:
     139  	case 2: index = (hix - 0x3fc30000) >> 14; break;
     140  	}
     141  */
     142        INSERT_WORDS64 (hhi, ((uint64_t)hix) << 32);
     143        h = hhi;
     144        if (iy)
     145  	l = (ix < 0 ? -y : y) - (h - x);
     146        else
     147  	l = x - h;
     148        z = l * l;
     149        sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5)))));
     150        cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5))));
     151        z = __sincosl_table [index + SINCOSL_SIN_HI]
     152  	  + (__sincosl_table [index + SINCOSL_SIN_LO]
     153  	     + (__sincosl_table [index + SINCOSL_SIN_HI] * cos_l_m1)
     154  	     + (__sincosl_table [index + SINCOSL_COS_HI] * sin_l));
     155        return (ix < 0) ? -z : z;
     156      }
     157  }