(root)/
glibc-2.38/
sysdeps/
ieee754/
ldbl-128ibm/
k_cosl.c
       1  /* Quad-precision floating point cosine on <-pi/4,pi/4>.
       2     Copyright (C) 1999-2023 Free Software Foundation, Inc.
       3     This file is part of the GNU C Library.
       4  
       5     The GNU C Library is free software; you can redistribute it and/or
       6     modify it under the terms of the GNU Lesser General Public
       7     License as published by the Free Software Foundation; either
       8     version 2.1 of the License, or (at your option) any later version.
       9  
      10     The GNU C Library is distributed in the hope that it will be useful,
      11     but WITHOUT ANY WARRANTY; without even the implied warranty of
      12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      13     Lesser General Public License for more details.
      14  
      15     You should have received a copy of the GNU Lesser General Public
      16     License along with the GNU C Library; if not, see
      17     <https://www.gnu.org/licenses/>.  */
      18  
      19  #include <math.h>
      20  #include <math_private.h>
      21  
      22  static const long double c[] = {
      23  #define ONE c[0]
      24   1.00000000000000000000000000000000000E+00L, /* 3fff0000000000000000000000000000 */
      25  
      26  /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
      27     x in <0,1/256>  */
      28  #define SCOS1 c[1]
      29  #define SCOS2 c[2]
      30  #define SCOS3 c[3]
      31  #define SCOS4 c[4]
      32  #define SCOS5 c[5]
      33  -5.00000000000000000000000000000000000E-01L, /* bffe0000000000000000000000000000 */
      34   4.16666666666666666666666666556146073E-02L, /* 3ffa5555555555555555555555395023 */
      35  -1.38888888888888888888309442601939728E-03L, /* bff56c16c16c16c16c16a566e42c0375 */
      36   2.48015873015862382987049502531095061E-05L, /* 3fefa01a01a019ee02dcf7da2d6d5444 */
      37  -2.75573112601362126593516899592158083E-07L, /* bfe927e4f5dce637cb0b54908754bde0 */
      38  
      39  /* cos x ~ ONE + x^2 ( COS1 + COS2 * x^2 + ... + COS7 * x^12 + COS8 * x^14 )
      40     x in <0,0.1484375>  */
      41  #define COS1 c[6]
      42  #define COS2 c[7]
      43  #define COS3 c[8]
      44  #define COS4 c[9]
      45  #define COS5 c[10]
      46  #define COS6 c[11]
      47  #define COS7 c[12]
      48  #define COS8 c[13]
      49  -4.99999999999999999999999999999999759E-01L, /* bffdfffffffffffffffffffffffffffb */
      50   4.16666666666666666666666666651287795E-02L, /* 3ffa5555555555555555555555516f30 */
      51  -1.38888888888888888888888742314300284E-03L, /* bff56c16c16c16c16c16c16a463dfd0d */
      52   2.48015873015873015867694002851118210E-05L, /* 3fefa01a01a01a01a0195cebe6f3d3a5 */
      53  -2.75573192239858811636614709689300351E-07L, /* bfe927e4fb7789f5aa8142a22044b51f */
      54   2.08767569877762248667431926878073669E-09L, /* 3fe21eed8eff881d1e9262d7adff4373 */
      55  -1.14707451049343817400420280514614892E-11L, /* bfda9397496922a9601ed3d4ca48944b */
      56   4.77810092804389587579843296923533297E-14L, /* 3fd2ae5f8197cbcdcaf7c3fb4523414c */
      57  
      58  /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
      59     x in <0,1/256>  */
      60  #define SSIN1 c[14]
      61  #define SSIN2 c[15]
      62  #define SSIN3 c[16]
      63  #define SSIN4 c[17]
      64  #define SSIN5 c[18]
      65  -1.66666666666666666666666666666666659E-01L, /* bffc5555555555555555555555555555 */
      66   8.33333333333333333333333333146298442E-03L, /* 3ff81111111111111111111110fe195d */
      67  -1.98412698412698412697726277416810661E-04L, /* bff2a01a01a01a01a019e7121e080d88 */
      68   2.75573192239848624174178393552189149E-06L, /* 3fec71de3a556c640c6aaa51aa02ab41 */
      69  -2.50521016467996193495359189395805639E-08L, /* bfe5ae644ee90c47dc71839de75b2787 */
      70  };
      71  
      72  #define SINCOSL_COS_HI 0
      73  #define SINCOSL_COS_LO 1
      74  #define SINCOSL_SIN_HI 2
      75  #define SINCOSL_SIN_LO 3
      76  extern const long double __sincosl_table[];
      77  
      78  long double
      79  __kernel_cosl(long double x, long double y)
      80  {
      81    long double h, l, z, sin_l, cos_l_m1;
      82    int64_t ix;
      83    uint32_t tix, hix, index;
      84    double xhi, hhi;
      85  
      86    xhi = ldbl_high (x);
      87    EXTRACT_WORDS64 (ix, xhi);
      88    tix = ((uint64_t)ix) >> 32;
      89    tix &= ~0x80000000;			/* tix = |x|'s high 32 bits */
      90    if (tix < 0x3fc30000)			/* |x| < 0.1484375 */
      91      {
      92        /* Argument is small enough to approximate it by a Chebyshev
      93  	 polynomial of degree 16.  */
      94        if (tix < 0x3c600000)		/* |x| < 2^-57 */
      95  	if (!((int)x)) return ONE;	/* generate inexact */
      96        z = x * x;
      97        return ONE + (z*(COS1+z*(COS2+z*(COS3+z*(COS4+
      98  		    z*(COS5+z*(COS6+z*(COS7+z*COS8))))))));
      99      }
     100    else
     101      {
     102        /* So that we don't have to use too large polynomial,  we find
     103  	 l and h such that x = l + h,  where fabsl(l) <= 1.0/256 with 83
     104  	 possible values for h.  We look up cosl(h) and sinl(h) in
     105  	 pre-computed tables,  compute cosl(l) and sinl(l) using a
     106  	 Chebyshev polynomial of degree 10(11) and compute
     107  	 cosl(h+l) = cosl(h)cosl(l) - sinl(h)sinl(l).  */
     108        int six = tix;
     109        tix = ((six - 0x3ff00000) >> 4) + 0x3fff0000;
     110        index = 0x3ffe - (tix >> 16);
     111        hix = (tix + (0x200 << index)) & (0xfffffc00 << index);
     112        x = fabsl (x);
     113        switch (index)
     114  	{
     115  	case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break;
     116  	case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break;
     117  	default:
     118  	case 2: index = (hix - 0x3ffc3000) >> 10; break;
     119  	}
     120        hix = (hix << 4) & 0x3fffffff;
     121  /*
     122      The following should work for double but generates the wrong index.
     123      For now the code above converts double to ieee extended to compute
     124      the index back to double for the h value.
     125  
     126        index = 0x3fe - (tix >> 20);
     127        hix = (tix + (0x200 << index)) & (0xfffffc00 << index);
     128        if (signbit (x))
     129  	{
     130  	  x = -x;
     131  	  y = -y;
     132  	}
     133        switch (index)
     134  	{
     135  	case 0: index = ((45 << 14) + hix - 0x3fe00000) >> 12; break;
     136  	case 1: index = ((13 << 15) + hix - 0x3fd00000) >> 13; break;
     137  	default:
     138  	case 2: index = (hix - 0x3fc30000) >> 14; break;
     139  	}
     140  */
     141        INSERT_WORDS64 (hhi, ((uint64_t)hix) << 32);
     142        h = hhi;
     143        l = y - (h - x);
     144        z = l * l;
     145        sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5)))));
     146        cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5))));
     147        return __sincosl_table [index + SINCOSL_COS_HI]
     148  	     + (__sincosl_table [index + SINCOSL_COS_LO]
     149  		- (__sincosl_table [index + SINCOSL_SIN_HI] * sin_l
     150  		   - __sincosl_table [index + SINCOSL_COS_HI] * cos_l_m1));
     151      }
     152  }