(root)/
glibc-2.38/
sysdeps/
ieee754/
ldbl-128ibm/
e_logl.c
       1  /*							logll.c
       2   *
       3   * Natural logarithm for 128-bit long double precision.
       4   *
       5   *
       6   *
       7   * SYNOPSIS:
       8   *
       9   * long double x, y, logl();
      10   *
      11   * y = logl( x );
      12   *
      13   *
      14   *
      15   * DESCRIPTION:
      16   *
      17   * Returns the base e (2.718...) logarithm of x.
      18   *
      19   * The argument is separated into its exponent and fractional
      20   * parts.  Use of a lookup table increases the speed of the routine.
      21   * The program uses logarithms tabulated at intervals of 1/128 to
      22   * cover the domain from approximately 0.7 to 1.4.
      23   *
      24   * On the interval [-1/128, +1/128] the logarithm of 1+x is approximated by
      25   *     log(1+x) = x - 0.5 x^2 + x^3 P(x) .
      26   *
      27   *
      28   *
      29   * ACCURACY:
      30   *
      31   *                      Relative error:
      32   * arithmetic   domain     # trials      peak         rms
      33   *    IEEE   0.875, 1.125   100000      1.2e-34    4.1e-35
      34   *    IEEE   0.125, 8       100000      1.2e-34    4.1e-35
      35   *
      36   *
      37   * WARNING:
      38   *
      39   * This program uses integer operations on bit fields of floating-point
      40   * numbers.  It does not work with data structures other than the
      41   * structure assumed.
      42   *
      43   */
      44  
      45  /* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov>
      46  
      47      This library is free software; you can redistribute it and/or
      48      modify it under the terms of the GNU Lesser General Public
      49      License as published by the Free Software Foundation; either
      50      version 2.1 of the License, or (at your option) any later version.
      51  
      52      This library is distributed in the hope that it will be useful,
      53      but WITHOUT ANY WARRANTY; without even the implied warranty of
      54      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      55      Lesser General Public License for more details.
      56  
      57      You should have received a copy of the GNU Lesser General Public
      58      License along with this library; if not, see
      59      <https://www.gnu.org/licenses/>.  */
      60  
      61  #include <math.h>
      62  #include <math_private.h>
      63  #include <libm-alias-finite.h>
      64  
      65  /* log(1+x) = x - .5 x^2 + x^3 l(x)
      66     -.0078125 <= x <= +.0078125
      67     peak relative error 1.2e-37 */
      68  static const long double
      69  l3 =   3.333333333333333333333333333333336096926E-1L,
      70  l4 =  -2.499999999999999999999999999486853077002E-1L,
      71  l5 =   1.999999999999999999999999998515277861905E-1L,
      72  l6 =  -1.666666666666666666666798448356171665678E-1L,
      73  l7 =   1.428571428571428571428808945895490721564E-1L,
      74  l8 =  -1.249999999999999987884655626377588149000E-1L,
      75  l9 =   1.111111111111111093947834982832456459186E-1L,
      76  l10 = -1.000000000000532974938900317952530453248E-1L,
      77  l11 =  9.090909090915566247008015301349979892689E-2L,
      78  l12 = -8.333333211818065121250921925397567745734E-2L,
      79  l13 =  7.692307559897661630807048686258659316091E-2L,
      80  l14 = -7.144242754190814657241902218399056829264E-2L,
      81  l15 =  6.668057591071739754844678883223432347481E-2L;
      82  
      83  /* Lookup table of ln(t) - (t-1)
      84      t = 0.5 + (k+26)/128)
      85      k = 0, ..., 91   */
      86  static const long double logtbl[92] = {
      87  -5.5345593589352099112142921677820359632418E-2L,
      88  -5.2108257402767124761784665198737642086148E-2L,
      89  -4.8991686870576856279407775480686721935120E-2L,
      90  -4.5993270766361228596215288742353061431071E-2L,
      91  -4.3110481649613269682442058976885699556950E-2L,
      92  -4.0340872319076331310838085093194799765520E-2L,
      93  -3.7682072451780927439219005993827431503510E-2L,
      94  -3.5131785416234343803903228503274262719586E-2L,
      95  -3.2687785249045246292687241862699949178831E-2L,
      96  -3.0347913785027239068190798397055267411813E-2L,
      97  -2.8110077931525797884641940838507561326298E-2L,
      98  -2.5972247078357715036426583294246819637618E-2L,
      99  -2.3932450635346084858612873953407168217307E-2L,
     100  -2.1988775689981395152022535153795155900240E-2L,
     101  -2.0139364778244501615441044267387667496733E-2L,
     102  -1.8382413762093794819267536615342902718324E-2L,
     103  -1.6716169807550022358923589720001638093023E-2L,
     104  -1.5138929457710992616226033183958974965355E-2L,
     105  -1.3649036795397472900424896523305726435029E-2L,
     106  -1.2244881690473465543308397998034325468152E-2L,
     107  -1.0924898127200937840689817557742469105693E-2L,
     108  -9.6875626072830301572839422532631079809328E-3L,
     109  -8.5313926245226231463436209313499745894157E-3L,
     110  -7.4549452072765973384933565912143044991706E-3L,
     111  -6.4568155251217050991200599386801665681310E-3L,
     112  -5.5356355563671005131126851708522185605193E-3L,
     113  -4.6900728132525199028885749289712348829878E-3L,
     114  -3.9188291218610470766469347968659624282519E-3L,
     115  -3.2206394539524058873423550293617843896540E-3L,
     116  -2.5942708080877805657374888909297113032132E-3L,
     117  -2.0385211375711716729239156839929281289086E-3L,
     118  -1.5522183228760777967376942769773768850872E-3L,
     119  -1.1342191863606077520036253234446621373191E-3L,
     120  -7.8340854719967065861624024730268350459991E-4L,
     121  -4.9869831458030115699628274852562992756174E-4L,
     122  -2.7902661731604211834685052867305795169688E-4L,
     123  -1.2335696813916860754951146082826952093496E-4L,
     124  -3.0677461025892873184042490943581654591817E-5L,
     125  #define ZERO logtbl[38]
     126   0.0000000000000000000000000000000000000000E0L,
     127  -3.0359557945051052537099938863236321874198E-5L,
     128  -1.2081346403474584914595395755316412213151E-4L,
     129  -2.7044071846562177120083903771008342059094E-4L,
     130  -4.7834133324631162897179240322783590830326E-4L,
     131  -7.4363569786340080624467487620270965403695E-4L,
     132  -1.0654639687057968333207323853366578860679E-3L,
     133  -1.4429854811877171341298062134712230604279E-3L,
     134  -1.8753781835651574193938679595797367137975E-3L,
     135  -2.3618380914922506054347222273705859653658E-3L,
     136  -2.9015787624124743013946600163375853631299E-3L,
     137  -3.4938307889254087318399313316921940859043E-3L,
     138  -4.1378413103128673800485306215154712148146E-3L,
     139  -4.8328735414488877044289435125365629849599E-3L,
     140  -5.5782063183564351739381962360253116934243E-3L,
     141  -6.3731336597098858051938306767880719015261E-3L,
     142  -7.2169643436165454612058905294782949315193E-3L,
     143  -8.1090214990427641365934846191367315083867E-3L,
     144  -9.0486422112807274112838713105168375482480E-3L,
     145  -1.0035177140880864314674126398350812606841E-2L,
     146  -1.1067990155502102718064936259435676477423E-2L,
     147  -1.2146457974158024928196575103115488672416E-2L,
     148  -1.3269969823361415906628825374158424754308E-2L,
     149  -1.4437927104692837124388550722759686270765E-2L,
     150  -1.5649743073340777659901053944852735064621E-2L,
     151  -1.6904842527181702880599758489058031645317E-2L,
     152  -1.8202661505988007336096407340750378994209E-2L,
     153  -1.9542647000370545390701192438691126552961E-2L,
     154  -2.0924256670080119637427928803038530924742E-2L,
     155  -2.2346958571309108496179613803760727786257E-2L,
     156  -2.3810230892650362330447187267648486279460E-2L,
     157  -2.5313561699385640380910474255652501521033E-2L,
     158  -2.6856448685790244233704909690165496625399E-2L,
     159  -2.8438398935154170008519274953860128449036E-2L,
     160  -3.0058928687233090922411781058956589863039E-2L,
     161  -3.1717563112854831855692484086486099896614E-2L,
     162  -3.3413836095418743219397234253475252001090E-2L,
     163  -3.5147290019036555862676702093393332533702E-2L,
     164  -3.6917475563073933027920505457688955423688E-2L,
     165  -3.8723951502862058660874073462456610731178E-2L,
     166  -4.0566284516358241168330505467000838017425E-2L,
     167  -4.2444048996543693813649967076598766917965E-2L,
     168  -4.4356826869355401653098777649745233339196E-2L,
     169  -4.6304207416957323121106944474331029996141E-2L,
     170  -4.8285787106164123613318093945035804818364E-2L,
     171  -5.0301169421838218987124461766244507342648E-2L,
     172  -5.2349964705088137924875459464622098310997E-2L,
     173  -5.4431789996103111613753440311680967840214E-2L,
     174  -5.6546268881465384189752786409400404404794E-2L,
     175  -5.8693031345788023909329239565012647817664E-2L,
     176  -6.0871713627532018185577188079210189048340E-2L,
     177  -6.3081958078862169742820420185833800925568E-2L,
     178  -6.5323413029406789694910800219643791556918E-2L,
     179  -6.7595732653791419081537811574227049288168E-2L
     180  };
     181  
     182  /* ln(2) = ln2a + ln2b with extended precision. */
     183  static const long double
     184    ln2a = 6.93145751953125e-1L,
     185    ln2b = 1.4286068203094172321214581765680755001344E-6L;
     186  
     187  static const long double
     188    ldbl_epsilon = 0x1p-106L;
     189  
     190  long double
     191  __ieee754_logl(long double x)
     192  {
     193    long double z, y, w, t;
     194    unsigned int m;
     195    int k, e;
     196    double xhi;
     197    uint32_t hx, lx;
     198  
     199    xhi = ldbl_high (x);
     200    EXTRACT_WORDS (hx, lx, xhi);
     201    m = hx;
     202  
     203    /* Check for IEEE special cases.  */
     204    k = m & 0x7fffffff;
     205    /* log(0) = -infinity. */
     206    if ((k | lx) == 0)
     207      {
     208        return -0.5L / ZERO;
     209      }
     210    /* log ( x < 0 ) = NaN */
     211    if (m & 0x80000000)
     212      {
     213        return (x - x) / ZERO;
     214      }
     215    /* log (infinity or NaN) */
     216    if (k >= 0x7ff00000)
     217      {
     218        return x + x;
     219      }
     220  
     221    /* On this interval the table is not used due to cancellation error.  */
     222    if ((x <= 1.0078125L) && (x >= 0.9921875L))
     223      {
     224        if (x == 1.0L)
     225  	return 0.0L;
     226        z = x - 1.0L;
     227        k = 64;
     228        t = 1.0L;
     229        e = 0;
     230      }
     231    else
     232      {
     233        /* Extract exponent and reduce domain to 0.703125 <= u < 1.40625  */
     234        unsigned int w0;
     235        e = (int) (m >> 20) - (int) 0x3fe;
     236        if (e == -1022)
     237  	{
     238  	  x *= 0x1p106L;
     239  	  xhi = ldbl_high (x);
     240  	  EXTRACT_WORDS (hx, lx, xhi);
     241  	  m = hx;
     242  	  e = (int) (m >> 20) - (int) 0x3fe - 106;
     243  	}
     244        m &= 0xfffff;
     245        w0 = m | 0x3fe00000;
     246        m |= 0x100000;
     247        /* Find lookup table index k from high order bits of the significand. */
     248        if (m < 0x168000)
     249  	{
     250  	  k = (m - 0xff000) >> 13;
     251  	  /* t is the argument 0.5 + (k+26)/128
     252  	     of the nearest item to u in the lookup table.  */
     253  	  INSERT_WORDS (xhi, 0x3ff00000 + (k << 13), 0);
     254  	  t = xhi;
     255  	  w0 += 0x100000;
     256  	  e -= 1;
     257  	  k += 64;
     258  	}
     259        else
     260  	{
     261  	  k = (m - 0xfe000) >> 14;
     262  	  INSERT_WORDS (xhi, 0x3fe00000 + (k << 14), 0);
     263  	  t = xhi;
     264  	}
     265        x = __scalbnl (x, ((int) ((w0 - hx) * 2)) >> 21);
     266        /* log(u) = log( t u/t ) = log(t) + log(u/t)
     267  	 log(t) is tabulated in the lookup table.
     268  	 Express log(u/t) = log(1+z),  where z = u/t - 1 = (u-t)/t.
     269  	 cf. Cody & Waite. */
     270        z = (x - t) / t;
     271      }
     272    /* Series expansion of log(1+z).  */
     273    w = z * z;
     274    /* Avoid spurious underflows.  */
     275    if (__glibc_unlikely (fabsl (z) <= ldbl_epsilon))
     276      y = 0.0L;
     277    else
     278      {
     279        y = ((((((((((((l15 * z
     280  		  + l14) * z
     281  		 + l13) * z
     282  		+ l12) * z
     283  	       + l11) * z
     284  	      + l10) * z
     285  	     + l9) * z
     286  	    + l8) * z
     287  	   + l7) * z
     288  	  + l6) * z
     289  	 + l5) * z
     290  	+ l4) * z
     291         + l3) * z * w;
     292        y -= 0.5 * w;
     293      }
     294    y += e * ln2b;  /* Base 2 exponent offset times ln(2).  */
     295    y += z;
     296    y += logtbl[k-26]; /* log(t) - (t-1) */
     297    y += (t - 1.0L);
     298    y += e * ln2a;
     299    return y;
     300  }
     301  libm_alias_finite (__ieee754_logl, __logl)