(root)/
glibc-2.38/
sysdeps/
ieee754/
ldbl-128ibm/
e_hypotl.c
       1  /* @(#)e_hypotl.c 5.1 93/09/24 */
       2  /*
       3   * ====================================================
       4   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
       5   *
       6   * Developed at SunPro, a Sun Microsystems, Inc. business.
       7   * Permission to use, copy, modify, and distribute this
       8   * software is freely granted, provided that this notice
       9   * is preserved.
      10   * ====================================================
      11   */
      12  
      13  /* __ieee754_hypotl(x,y)
      14   *
      15   * Method :
      16   *	If (assume round-to-nearest) z=x*x+y*y
      17   *	has error less than sqrtl(2)/2 ulp, than
      18   *	sqrtl(z) has error less than 1 ulp (exercise).
      19   *
      20   *	So, compute sqrtl(x*x+y*y) with some care as
      21   *	follows to get the error below 1 ulp:
      22   *
      23   *	Assume x>y>0;
      24   *	(if possible, set rounding to round-to-nearest)
      25   *	1. if x > 2y  use
      26   *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
      27   *	where x1 = x with lower 53 bits cleared, x2 = x-x1; else
      28   *	2. if x <= 2y use
      29   *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
      30   *	where t1 = 2x with lower 53 bits cleared, t2 = 2x-t1,
      31   *	y1= y with lower 53 bits chopped, y2 = y-y1.
      32   *
      33   *	NOTE: scaling may be necessary if some argument is too
      34   *	      large or too tiny
      35   *
      36   * Special cases:
      37   *	hypotl(x,y) is INF if x or y is +INF or -INF; else
      38   *	hypotl(x,y) is NAN if x or y is NAN.
      39   *
      40   * Accuracy:
      41   *	hypotl(x,y) returns sqrtl(x^2+y^2) with error less
      42   *	than 1 ulps (units in the last place)
      43   */
      44  
      45  #include <math.h>
      46  #include <math_private.h>
      47  #include <math-underflow.h>
      48  #include <libm-alias-finite.h>
      49  
      50  long double
      51  __ieee754_hypotl(long double x, long double y)
      52  {
      53  	long double a,b,a1,a2,b1,b2,w,kld;
      54  	int64_t j,k,ha,hb;
      55  	double xhi, yhi, hi, lo;
      56  
      57  	xhi = ldbl_high (x);
      58  	EXTRACT_WORDS64 (ha, xhi);
      59  	yhi = ldbl_high (y);
      60  	EXTRACT_WORDS64 (hb, yhi);
      61  	ha &= 0x7fffffffffffffffLL;
      62  	hb &= 0x7fffffffffffffffLL;
      63  	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
      64  	a = fabsl(a);	/* a <- |a| */
      65  	b = fabsl(b);	/* b <- |b| */
      66  	if((ha-hb)>0x0780000000000000LL) {return a+b;} /* x/y > 2**120 */
      67  	k=0;
      68  	kld = 1.0L;
      69  	if(ha > 0x5f30000000000000LL) {	/* a>2**500 */
      70  	   if(ha >= 0x7ff0000000000000LL) {	/* Inf or NaN */
      71  	       w = a+b;			/* for sNaN */
      72  	       if (issignaling (a) || issignaling (b))
      73  		 return w;
      74  	       if(ha == 0x7ff0000000000000LL)
      75  		 w = a;
      76  	       if(hb == 0x7ff0000000000000LL)
      77  		 w = b;
      78  	       return w;
      79  	   }
      80  	   /* scale a and b by 2**-600 */
      81  	   a *= 0x1p-600L;
      82  	   b *= 0x1p-600L;
      83  	   k = 600;
      84  	   kld = 0x1p+600L;
      85  	}
      86  	else if(hb < 0x23d0000000000000LL) {	/* b < 2**-450 */
      87  	    if(hb <= 0x000fffffffffffffLL) {	/* subnormal b or 0 */
      88  		if(hb==0) return a;
      89  		a *= 0x1p+1022L;
      90  		b *= 0x1p+1022L;
      91  		k = -1022;
      92  		kld = 0x1p-1022L;
      93  	    } else {		/* scale a and b by 2^600 */
      94  		a *= 0x1p+600L;
      95  		b *= 0x1p+600L;
      96  		k = -600;
      97  		kld = 0x1p-600L;
      98  	    }
      99  	}
     100      /* medium size a and b */
     101  	w = a-b;
     102  	if (w>b) {
     103  	    ldbl_unpack (a, &hi, &lo);
     104  	    a1 = hi;
     105  	    a2 = lo;
     106  	    /* a*a + b*b
     107  	       = (a1+a2)*a + b*b
     108  	       = a1*a + a2*a + b*b
     109  	       = a1*(a1+a2) + a2*a + b*b
     110  	       = a1*a1 + a1*a2 + a2*a + b*b
     111  	       = a1*a1 + a2*(a+a1) + b*b  */
     112  	    w  = sqrtl(a1*a1-(b*(-b)-a2*(a+a1)));
     113  	} else {
     114  	    a  = a+a;
     115  	    ldbl_unpack (b, &hi, &lo);
     116  	    b1 = hi;
     117  	    b2 = lo;
     118  	    ldbl_unpack (a, &hi, &lo);
     119  	    a1 = hi;
     120  	    a2 = lo;
     121  	    /* a*a + b*b
     122  	       = a*a + (a-b)*(a-b) - (a-b)*(a-b) + b*b
     123  	       = a*a + w*w  - (a*a - 2*a*b + b*b) + b*b
     124  	       = w*w + 2*a*b
     125  	       = w*w + (a1+a2)*b
     126  	       = w*w + a1*b + a2*b
     127  	       = w*w + a1*(b1+b2) + a2*b
     128  	       = w*w + a1*b1 + a1*b2 + a2*b  */
     129  	    w  = sqrtl(a1*b1-(w*(-w)-(a1*b2+a2*b)));
     130  	}
     131  	if(k!=0)
     132  	    {
     133  		w *= kld;
     134  		math_check_force_underflow_nonneg (w);
     135  		return w;
     136  	    }
     137  	else
     138  	    return w;
     139  }
     140  libm_alias_finite (__ieee754_hypotl, __hypotl)