(root)/
glibc-2.38/
sysdeps/
ieee754/
ldbl-128ibm/
e_gammal_r.c
       1  /* Implementation of gamma function according to ISO C.
       2     Copyright (C) 1997-2023 Free Software Foundation, Inc.
       3     This file is part of the GNU C Library.
       4  
       5     The GNU C Library is free software; you can redistribute it and/or
       6     modify it under the terms of the GNU Lesser General Public
       7     License as published by the Free Software Foundation; either
       8     version 2.1 of the License, or (at your option) any later version.
       9  
      10     The GNU C Library is distributed in the hope that it will be useful,
      11     but WITHOUT ANY WARRANTY; without even the implied warranty of
      12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      13     Lesser General Public License for more details.
      14  
      15     You should have received a copy of the GNU Lesser General Public
      16     License along with the GNU C Library; if not, see
      17     <https://www.gnu.org/licenses/>.  */
      18  
      19  #include <math.h>
      20  #include <math_private.h>
      21  #include <fenv_private.h>
      22  #include <math-underflow.h>
      23  #include <float.h>
      24  #include <libm-alias-finite.h>
      25  
      26  /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
      27     approximation to gamma function.  */
      28  
      29  static const long double gamma_coeff[] =
      30    {
      31      0x1.555555555555555555555555558p-4L,
      32      -0xb.60b60b60b60b60b60b60b60b6p-12L,
      33      0x3.4034034034034034034034034p-12L,
      34      -0x2.7027027027027027027027027p-12L,
      35      0x3.72a3c5631fe46ae1d4e700dca9p-12L,
      36      -0x7.daac36664f1f207daac36664f2p-12L,
      37      0x1.a41a41a41a41a41a41a41a41a4p-8L,
      38      -0x7.90a1b2c3d4e5f708192a3b4c5ep-8L,
      39      0x2.dfd2c703c0cfff430edfd2c704p-4L,
      40      -0x1.6476701181f39edbdb9ce625988p+0L,
      41      0xd.672219167002d3a7a9c886459cp+0L,
      42      -0x9.cd9292e6660d55b3f712eb9e08p+4L,
      43      0x8.911a740da740da740da740da74p+8L,
      44    };
      45  
      46  #define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
      47  
      48  /* Return gamma (X), for positive X less than 191, in the form R *
      49     2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
      50     avoid overflow or underflow in intermediate calculations.  */
      51  
      52  static long double
      53  gammal_positive (long double x, int *exp2_adj)
      54  {
      55    int local_signgam;
      56    if (x < 0.5L)
      57      {
      58        *exp2_adj = 0;
      59        return __ieee754_expl (__ieee754_lgammal_r (x + 1, &local_signgam)) / x;
      60      }
      61    else if (x <= 1.5L)
      62      {
      63        *exp2_adj = 0;
      64        return __ieee754_expl (__ieee754_lgammal_r (x, &local_signgam));
      65      }
      66    else if (x < 11.5L)
      67      {
      68        /* Adjust into the range for using exp (lgamma).  */
      69        *exp2_adj = 0;
      70        long double n = ceill (x - 1.5L);
      71        long double x_adj = x - n;
      72        long double eps;
      73        long double prod = __gamma_productl (x_adj, 0, n, &eps);
      74        return (__ieee754_expl (__ieee754_lgammal_r (x_adj, &local_signgam))
      75  	      * prod * (1.0L + eps));
      76      }
      77    else
      78      {
      79        long double eps = 0;
      80        long double x_eps = 0;
      81        long double x_adj = x;
      82        long double prod = 1;
      83        if (x < 23.0L)
      84  	{
      85  	  /* Adjust into the range for applying Stirling's
      86  	     approximation.  */
      87  	  long double n = ceill (23.0L - x);
      88  	  x_adj = x + n;
      89  	  x_eps = (x - (x_adj - n));
      90  	  prod = __gamma_productl (x_adj - n, x_eps, n, &eps);
      91  	}
      92        /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
      93  	 Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
      94  	 starting by computing pow (X_ADJ, X_ADJ) with a power of 2
      95  	 factored out.  */
      96        long double exp_adj = -eps;
      97        long double x_adj_int = roundl (x_adj);
      98        long double x_adj_frac = x_adj - x_adj_int;
      99        int x_adj_log2;
     100        long double x_adj_mant = __frexpl (x_adj, &x_adj_log2);
     101        if (x_adj_mant < M_SQRT1_2l)
     102  	{
     103  	  x_adj_log2--;
     104  	  x_adj_mant *= 2.0L;
     105  	}
     106        *exp2_adj = x_adj_log2 * (int) x_adj_int;
     107        long double ret = (__ieee754_powl (x_adj_mant, x_adj)
     108  			 * __ieee754_exp2l (x_adj_log2 * x_adj_frac)
     109  			 * __ieee754_expl (-x_adj)
     110  			 * sqrtl (2 * M_PIl / x_adj)
     111  			 / prod);
     112        exp_adj += x_eps * __ieee754_logl (x_adj);
     113        long double bsum = gamma_coeff[NCOEFF - 1];
     114        long double x_adj2 = x_adj * x_adj;
     115        for (size_t i = 1; i <= NCOEFF - 1; i++)
     116  	bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
     117        exp_adj += bsum / x_adj;
     118        return ret + ret * __expm1l (exp_adj);
     119      }
     120  }
     121  
     122  long double
     123  __ieee754_gammal_r (long double x, int *signgamp)
     124  {
     125    int64_t hx;
     126    double xhi;
     127    long double ret;
     128  
     129    xhi = ldbl_high (x);
     130    EXTRACT_WORDS64 (hx, xhi);
     131  
     132    if ((hx & 0x7fffffffffffffffLL) == 0)
     133      {
     134        /* Return value for x == 0 is Inf with divide by zero exception.  */
     135        *signgamp = 0;
     136        return 1.0 / x;
     137      }
     138    if (hx < 0 && (uint64_t) hx < 0xfff0000000000000ULL && rintl (x) == x)
     139      {
     140        /* Return value for integer x < 0 is NaN with invalid exception.  */
     141        *signgamp = 0;
     142        return (x - x) / (x - x);
     143      }
     144    if (hx == 0xfff0000000000000ULL)
     145      {
     146        /* x == -Inf.  According to ISO this is NaN.  */
     147        *signgamp = 0;
     148        return x - x;
     149      }
     150    if ((hx & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL)
     151      {
     152        /* Positive infinity (return positive infinity) or NaN (return
     153  	 NaN).  */
     154        *signgamp = 0;
     155        return x + x;
     156      }
     157  
     158    if (x >= 172.0L)
     159      {
     160        /* Overflow.  */
     161        *signgamp = 0;
     162        return LDBL_MAX * LDBL_MAX;
     163      }
     164    else
     165      {
     166        SET_RESTORE_ROUNDL (FE_TONEAREST);
     167        if (x > 0.0L)
     168  	{
     169  	  *signgamp = 0;
     170  	  int exp2_adj;
     171  	  ret = gammal_positive (x, &exp2_adj);
     172  	  ret = __scalbnl (ret, exp2_adj);
     173  	}
     174        else if (x >= -0x1p-110L)
     175  	{
     176  	  *signgamp = 0;
     177  	  ret = 1.0L / x;
     178  	}
     179        else
     180  	{
     181  	  long double tx = truncl (x);
     182  	  *signgamp = (tx == 2.0L * truncl (tx / 2.0L)) ? -1 : 1;
     183  	  if (x <= -191.0L)
     184  	    /* Underflow.  */
     185  	    ret = LDBL_MIN * LDBL_MIN;
     186  	  else
     187  	    {
     188  	      long double frac = tx - x;
     189  	      if (frac > 0.5L)
     190  		frac = 1.0L - frac;
     191  	      long double sinpix = (frac <= 0.25L
     192  				    ? __sinl (M_PIl * frac)
     193  				    : __cosl (M_PIl * (0.5L - frac)));
     194  	      int exp2_adj;
     195  	      ret = M_PIl / (-x * sinpix
     196  			     * gammal_positive (-x, &exp2_adj));
     197  	      ret = __scalbnl (ret, -exp2_adj);
     198  	      math_check_force_underflow_nonneg (ret);
     199  	    }
     200  	}
     201      }
     202    if (isinf (ret) && x != 0)
     203      {
     204        if (*signgamp < 0)
     205  	return -(-copysignl (LDBL_MAX, ret) * LDBL_MAX);
     206        else
     207  	return copysignl (LDBL_MAX, ret) * LDBL_MAX;
     208      }
     209    else if (ret == 0)
     210      {
     211        if (*signgamp < 0)
     212  	return -(-copysignl (LDBL_MIN, ret) * LDBL_MIN);
     213        else
     214  	return copysignl (LDBL_MIN, ret) * LDBL_MIN;
     215      }
     216    else
     217      return ret;
     218  }
     219  libm_alias_finite (__ieee754_gammal_r, __gammal_r)