(root)/
glibc-2.38/
sysdeps/
ieee754/
ldbl-128/
ldbl2mpn.c
       1  /* Copyright (C) 1995-2023 Free Software Foundation, Inc.
       2     This file is part of the GNU C Library.
       3  
       4     The GNU C Library is free software; you can redistribute it and/or
       5     modify it under the terms of the GNU Lesser General Public
       6     License as published by the Free Software Foundation; either
       7     version 2.1 of the License, or (at your option) any later version.
       8  
       9     The GNU C Library is distributed in the hope that it will be useful,
      10     but WITHOUT ANY WARRANTY; without even the implied warranty of
      11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      12     Lesser General Public License for more details.
      13  
      14     You should have received a copy of the GNU Lesser General Public
      15     License along with the GNU C Library; if not, see
      16     <https://www.gnu.org/licenses/>.  */
      17  
      18  #include "gmp.h"
      19  #include "gmp-impl.h"
      20  #include "longlong.h"
      21  #include <ieee754.h>
      22  #include <float.h>
      23  #include <math.h>
      24  #include <math_private.h>
      25  #include <stdlib.h>
      26  
      27  /* Convert a `long double' in IEEE854 quad-precision format to a
      28     multi-precision integer representing the significand scaled up by its
      29     number of bits (113 for long double) and an integral power of two
      30     (MPN frexpl). */
      31  
      32  mp_size_t
      33  __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
      34  			   int *expt, int *is_neg,
      35  			   _Float128 value)
      36  {
      37    union ieee854_long_double u;
      38    u.d = value;
      39  
      40    *is_neg = u.ieee.negative;
      41    *expt = (int) u.ieee.exponent - IEEE854_LONG_DOUBLE_BIAS;
      42  
      43  #if BITS_PER_MP_LIMB == 32
      44    res_ptr[0] = u.ieee.mantissa3; /* Low-order 32 bits of fraction.  */
      45    res_ptr[1] = u.ieee.mantissa2;
      46    res_ptr[2] = u.ieee.mantissa1;
      47    res_ptr[3] = u.ieee.mantissa0; /* High-order 32 bits.  */
      48    #define N 4
      49  #elif BITS_PER_MP_LIMB == 64
      50    /* Hopefully the compiler will combine the two bitfield extracts
      51       and this composition into just the original quadword extract.  */
      52    res_ptr[0] = ((mp_limb_t) u.ieee.mantissa2 << 32) | u.ieee.mantissa3;
      53    res_ptr[1] = ((mp_limb_t) u.ieee.mantissa0 << 32) | u.ieee.mantissa1;
      54    #define N 2
      55  #else
      56    #error "mp_limb size " BITS_PER_MP_LIMB "not accounted for"
      57  #endif
      58  /* The format does not fill the last limb.  There are some zeros.  */
      59  #define NUM_LEADING_ZEROS (BITS_PER_MP_LIMB \
      60  			   - (LDBL_MANT_DIG - ((N - 1) * BITS_PER_MP_LIMB)))
      61  
      62    if (u.ieee.exponent == 0)
      63      {
      64        /* A biased exponent of zero is a special case.
      65  	 Either it is a zero or it is a denormal number.  */
      66        if (res_ptr[0] == 0 && res_ptr[1] == 0
      67            && res_ptr[N - 2] == 0 && res_ptr[N - 1] == 0) /* Assumes N<=4.  */
      68  	/* It's zero.  */
      69  	*expt = 0;
      70        else
      71  	{
      72            /* It is a denormal number, meaning it has no implicit leading
      73  	     one bit, and its exponent is in fact the format minimum.  */
      74  	  int cnt;
      75  
      76  #if N == 2
      77  	  if (res_ptr[N - 1] != 0)
      78  	    {
      79  	      count_leading_zeros (cnt, res_ptr[N - 1]);
      80  	      cnt -= NUM_LEADING_ZEROS;
      81  	      res_ptr[N - 1] = res_ptr[N - 1] << cnt
      82  			       | (res_ptr[0] >> (BITS_PER_MP_LIMB - cnt));
      83  	      res_ptr[0] <<= cnt;
      84  	      *expt = LDBL_MIN_EXP - 1 - cnt;
      85  	    }
      86  	  else
      87  	    {
      88  	      count_leading_zeros (cnt, res_ptr[0]);
      89  	      if (cnt >= NUM_LEADING_ZEROS)
      90  		{
      91  		  res_ptr[N - 1] = res_ptr[0] << (cnt - NUM_LEADING_ZEROS);
      92  		  res_ptr[0] = 0;
      93  		}
      94  	      else
      95  		{
      96  		  res_ptr[N - 1] = res_ptr[0] >> (NUM_LEADING_ZEROS - cnt);
      97  		  res_ptr[0] <<= BITS_PER_MP_LIMB - (NUM_LEADING_ZEROS - cnt);
      98  		}
      99  	      *expt = LDBL_MIN_EXP - 1
     100  		- (BITS_PER_MP_LIMB - NUM_LEADING_ZEROS) - cnt;
     101  	    }
     102  #else
     103  	  int j, k, l;
     104  
     105  	  for (j = N - 1; j > 0; j--)
     106  	    if (res_ptr[j] != 0)
     107  	      break;
     108  
     109  	  count_leading_zeros (cnt, res_ptr[j]);
     110  	  cnt -= NUM_LEADING_ZEROS;
     111  	  l = N - 1 - j;
     112  	  if (cnt < 0)
     113  	    {
     114  	      cnt += BITS_PER_MP_LIMB;
     115  	      l--;
     116  	    }
     117  	  if (!cnt)
     118  	    for (k = N - 1; k >= l; k--)
     119  	      res_ptr[k] = res_ptr[k-l];
     120  	  else
     121  	    {
     122  	      for (k = N - 1; k > l; k--)
     123  		res_ptr[k] = res_ptr[k-l] << cnt
     124  			     | res_ptr[k-l-1] >> (BITS_PER_MP_LIMB - cnt);
     125  	      res_ptr[k--] = res_ptr[0] << cnt;
     126  	    }
     127  
     128  	  for (; k >= 0; k--)
     129  	    res_ptr[k] = 0;
     130  	  *expt = LDBL_MIN_EXP - 1 - l * BITS_PER_MP_LIMB - cnt;
     131  #endif
     132  	}
     133      }
     134    else
     135      /* Add the implicit leading one bit for a normalized number.  */
     136      res_ptr[N - 1] |= (mp_limb_t) 1 << (LDBL_MANT_DIG - 1
     137  					- ((N - 1) * BITS_PER_MP_LIMB));
     138  
     139    return N;
     140  }