(root)/
glibc-2.38/
sysdeps/
ieee754/
ldbl-128/
k_sinl.c
       1  /* Quad-precision floating point sine on <-pi/4,pi/4>.
       2     Copyright (C) 1999-2023 Free Software Foundation, Inc.
       3     This file is part of the GNU C Library.
       4  
       5     The GNU C Library is free software; you can redistribute it and/or
       6     modify it under the terms of the GNU Lesser General Public
       7     License as published by the Free Software Foundation; either
       8     version 2.1 of the License, or (at your option) any later version.
       9  
      10     The GNU C Library is distributed in the hope that it will be useful,
      11     but WITHOUT ANY WARRANTY; without even the implied warranty of
      12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      13     Lesser General Public License for more details.
      14  
      15     You should have received a copy of the GNU Lesser General Public
      16     License along with the GNU C Library; if not, see
      17     <https://www.gnu.org/licenses/>.  */
      18  
      19  #include <float.h>
      20  #include <math.h>
      21  #include <math_private.h>
      22  #include <math-underflow.h>
      23  
      24  static const _Float128 c[] = {
      25  #define ONE c[0]
      26   L(1.00000000000000000000000000000000000E+00), /* 3fff0000000000000000000000000000 */
      27  
      28  /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
      29     x in <0,1/256>  */
      30  #define SCOS1 c[1]
      31  #define SCOS2 c[2]
      32  #define SCOS3 c[3]
      33  #define SCOS4 c[4]
      34  #define SCOS5 c[5]
      35  L(-5.00000000000000000000000000000000000E-01), /* bffe0000000000000000000000000000 */
      36   L(4.16666666666666666666666666556146073E-02), /* 3ffa5555555555555555555555395023 */
      37  L(-1.38888888888888888888309442601939728E-03), /* bff56c16c16c16c16c16a566e42c0375 */
      38   L(2.48015873015862382987049502531095061E-05), /* 3fefa01a01a019ee02dcf7da2d6d5444 */
      39  L(-2.75573112601362126593516899592158083E-07), /* bfe927e4f5dce637cb0b54908754bde0 */
      40  
      41  /* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 )
      42     x in <0,0.1484375>  */
      43  #define SIN1 c[6]
      44  #define SIN2 c[7]
      45  #define SIN3 c[8]
      46  #define SIN4 c[9]
      47  #define SIN5 c[10]
      48  #define SIN6 c[11]
      49  #define SIN7 c[12]
      50  #define SIN8 c[13]
      51  L(-1.66666666666666666666666666666666538e-01), /* bffc5555555555555555555555555550 */
      52   L(8.33333333333333333333333333307532934e-03), /* 3ff811111111111111111111110e7340 */
      53  L(-1.98412698412698412698412534478712057e-04), /* bff2a01a01a01a01a01a019e7a626296 */
      54   L(2.75573192239858906520896496653095890e-06), /* 3fec71de3a556c7338fa38527474b8f5 */
      55  L(-2.50521083854417116999224301266655662e-08), /* bfe5ae64567f544e16c7de65c2ea551f */
      56   L(1.60590438367608957516841576404938118e-10), /* 3fde6124613a811480538a9a41957115 */
      57  L(-7.64716343504264506714019494041582610e-13), /* bfd6ae7f3d5aef30c7bc660b060ef365 */
      58   L(2.81068754939739570236322404393398135e-15), /* 3fce9510115aabf87aceb2022a9a9180 */
      59  
      60  /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
      61     x in <0,1/256>  */
      62  #define SSIN1 c[14]
      63  #define SSIN2 c[15]
      64  #define SSIN3 c[16]
      65  #define SSIN4 c[17]
      66  #define SSIN5 c[18]
      67  L(-1.66666666666666666666666666666666659E-01), /* bffc5555555555555555555555555555 */
      68   L(8.33333333333333333333333333146298442E-03), /* 3ff81111111111111111111110fe195d */
      69  L(-1.98412698412698412697726277416810661E-04), /* bff2a01a01a01a01a019e7121e080d88 */
      70   L(2.75573192239848624174178393552189149E-06), /* 3fec71de3a556c640c6aaa51aa02ab41 */
      71  L(-2.50521016467996193495359189395805639E-08), /* bfe5ae644ee90c47dc71839de75b2787 */
      72  };
      73  
      74  #define SINCOSL_COS_HI 0
      75  #define SINCOSL_COS_LO 1
      76  #define SINCOSL_SIN_HI 2
      77  #define SINCOSL_SIN_LO 3
      78  extern const _Float128 __sincosl_table[];
      79  
      80  _Float128
      81  __kernel_sinl(_Float128 x, _Float128 y, int iy)
      82  {
      83    _Float128 h, l, z, sin_l, cos_l_m1;
      84    int64_t ix;
      85    uint32_t tix, hix, index;
      86    GET_LDOUBLE_MSW64 (ix, x);
      87    tix = ((uint64_t)ix) >> 32;
      88    tix &= ~0x80000000;			/* tix = |x|'s high 32 bits */
      89    if (tix < 0x3ffc3000)			/* |x| < 0.1484375 */
      90      {
      91        /* Argument is small enough to approximate it by a Chebyshev
      92  	 polynomial of degree 17.  */
      93        if (tix < 0x3fc60000)		/* |x| < 2^-57 */
      94  	{
      95  	  math_check_force_underflow (x);
      96  	  if (!((int)x)) return x;	/* generate inexact */
      97  	}
      98        z = x * x;
      99        return x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+
     100  		       z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8)))))))));
     101      }
     102    else
     103      {
     104        /* So that we don't have to use too large polynomial,  we find
     105  	 l and h such that x = l + h,  where fabsl(l) <= 1.0/256 with 83
     106  	 possible values for h.  We look up cosl(h) and sinl(h) in
     107  	 pre-computed tables,  compute cosl(l) and sinl(l) using a
     108  	 Chebyshev polynomial of degree 10(11) and compute
     109  	 sinl(h+l) = sinl(h)cosl(l) + cosl(h)sinl(l).  */
     110        index = 0x3ffe - (tix >> 16);
     111        hix = (tix + (0x200 << index)) & (0xfffffc00 << index);
     112        x = fabsl (x);
     113        switch (index)
     114  	{
     115  	case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break;
     116  	case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break;
     117  	default:
     118  	case 2: index = (hix - 0x3ffc3000) >> 10; break;
     119  	}
     120  
     121        SET_LDOUBLE_WORDS64(h, ((uint64_t)hix) << 32, 0);
     122        if (iy)
     123  	l = (ix < 0 ? -y : y) - (h - x);
     124        else
     125  	l = x - h;
     126        z = l * l;
     127        sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5)))));
     128        cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5))));
     129        z = __sincosl_table [index + SINCOSL_SIN_HI]
     130  	  + (__sincosl_table [index + SINCOSL_SIN_LO]
     131  	     + (__sincosl_table [index + SINCOSL_SIN_HI] * cos_l_m1)
     132  	     + (__sincosl_table [index + SINCOSL_COS_HI] * sin_l));
     133        return (ix < 0) ? -z : z;
     134      }
     135  }