1  /*							logll.c
       2   *
       3   * Natural logarithm for 128-bit long double precision.
       4   *
       5   *
       6   *
       7   * SYNOPSIS:
       8   *
       9   * long double x, y, logl();
      10   *
      11   * y = logl( x );
      12   *
      13   *
      14   *
      15   * DESCRIPTION:
      16   *
      17   * Returns the base e (2.718...) logarithm of x.
      18   *
      19   * The argument is separated into its exponent and fractional
      20   * parts.  Use of a lookup table increases the speed of the routine.
      21   * The program uses logarithms tabulated at intervals of 1/128 to
      22   * cover the domain from approximately 0.7 to 1.4.
      23   *
      24   * On the interval [-1/128, +1/128] the logarithm of 1+x is approximated by
      25   *     log(1+x) = x - 0.5 x^2 + x^3 P(x) .
      26   *
      27   *
      28   *
      29   * ACCURACY:
      30   *
      31   *                      Relative error:
      32   * arithmetic   domain     # trials      peak         rms
      33   *    IEEE   0.875, 1.125   100000      1.2e-34    4.1e-35
      34   *    IEEE   0.125, 8       100000      1.2e-34    4.1e-35
      35   *
      36   *
      37   * WARNING:
      38   *
      39   * This program uses integer operations on bit fields of floating-point
      40   * numbers.  It does not work with data structures other than the
      41   * structure assumed.
      42   *
      43   */
      44  
      45  /* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov>
      46  
      47      This library is free software; you can redistribute it and/or
      48      modify it under the terms of the GNU Lesser General Public
      49      License as published by the Free Software Foundation; either
      50      version 2.1 of the License, or (at your option) any later version.
      51  
      52      This library is distributed in the hope that it will be useful,
      53      but WITHOUT ANY WARRANTY; without even the implied warranty of
      54      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      55      Lesser General Public License for more details.
      56  
      57      You should have received a copy of the GNU Lesser General Public
      58      License along with this library; if not, see
      59      <https://www.gnu.org/licenses/>.  */
      60  
      61  #include <math.h>
      62  #include <math_private.h>
      63  #include <libm-alias-finite.h>
      64  
      65  /* log(1+x) = x - .5 x^2 + x^3 l(x)
      66     -.0078125 <= x <= +.0078125
      67     peak relative error 1.2e-37 */
      68  static const _Float128
      69  l3 =   L(3.333333333333333333333333333333336096926E-1),
      70  l4 =  L(-2.499999999999999999999999999486853077002E-1),
      71  l5 =   L(1.999999999999999999999999998515277861905E-1),
      72  l6 =  L(-1.666666666666666666666798448356171665678E-1),
      73  l7 =   L(1.428571428571428571428808945895490721564E-1),
      74  l8 =  L(-1.249999999999999987884655626377588149000E-1),
      75  l9 =   L(1.111111111111111093947834982832456459186E-1),
      76  l10 = L(-1.000000000000532974938900317952530453248E-1),
      77  l11 =  L(9.090909090915566247008015301349979892689E-2),
      78  l12 = L(-8.333333211818065121250921925397567745734E-2),
      79  l13 =  L(7.692307559897661630807048686258659316091E-2),
      80  l14 = L(-7.144242754190814657241902218399056829264E-2),
      81  l15 =  L(6.668057591071739754844678883223432347481E-2);
      82  
      83  /* Lookup table of ln(t) - (t-1)
      84      t = 0.5 + (k+26)/128)
      85      k = 0, ..., 91   */
      86  static const _Float128 logtbl[92] = {
      87  L(-5.5345593589352099112142921677820359632418E-2),
      88  L(-5.2108257402767124761784665198737642086148E-2),
      89  L(-4.8991686870576856279407775480686721935120E-2),
      90  L(-4.5993270766361228596215288742353061431071E-2),
      91  L(-4.3110481649613269682442058976885699556950E-2),
      92  L(-4.0340872319076331310838085093194799765520E-2),
      93  L(-3.7682072451780927439219005993827431503510E-2),
      94  L(-3.5131785416234343803903228503274262719586E-2),
      95  L(-3.2687785249045246292687241862699949178831E-2),
      96  L(-3.0347913785027239068190798397055267411813E-2),
      97  L(-2.8110077931525797884641940838507561326298E-2),
      98  L(-2.5972247078357715036426583294246819637618E-2),
      99  L(-2.3932450635346084858612873953407168217307E-2),
     100  L(-2.1988775689981395152022535153795155900240E-2),
     101  L(-2.0139364778244501615441044267387667496733E-2),
     102  L(-1.8382413762093794819267536615342902718324E-2),
     103  L(-1.6716169807550022358923589720001638093023E-2),
     104  L(-1.5138929457710992616226033183958974965355E-2),
     105  L(-1.3649036795397472900424896523305726435029E-2),
     106  L(-1.2244881690473465543308397998034325468152E-2),
     107  L(-1.0924898127200937840689817557742469105693E-2),
     108  L(-9.6875626072830301572839422532631079809328E-3),
     109  L(-8.5313926245226231463436209313499745894157E-3),
     110  L(-7.4549452072765973384933565912143044991706E-3),
     111  L(-6.4568155251217050991200599386801665681310E-3),
     112  L(-5.5356355563671005131126851708522185605193E-3),
     113  L(-4.6900728132525199028885749289712348829878E-3),
     114  L(-3.9188291218610470766469347968659624282519E-3),
     115  L(-3.2206394539524058873423550293617843896540E-3),
     116  L(-2.5942708080877805657374888909297113032132E-3),
     117  L(-2.0385211375711716729239156839929281289086E-3),
     118  L(-1.5522183228760777967376942769773768850872E-3),
     119  L(-1.1342191863606077520036253234446621373191E-3),
     120  L(-7.8340854719967065861624024730268350459991E-4),
     121  L(-4.9869831458030115699628274852562992756174E-4),
     122  L(-2.7902661731604211834685052867305795169688E-4),
     123  L(-1.2335696813916860754951146082826952093496E-4),
     124  L(-3.0677461025892873184042490943581654591817E-5),
     125  #define ZERO logtbl[38]
     126   L(0.0000000000000000000000000000000000000000E0),
     127  L(-3.0359557945051052537099938863236321874198E-5),
     128  L(-1.2081346403474584914595395755316412213151E-4),
     129  L(-2.7044071846562177120083903771008342059094E-4),
     130  L(-4.7834133324631162897179240322783590830326E-4),
     131  L(-7.4363569786340080624467487620270965403695E-4),
     132  L(-1.0654639687057968333207323853366578860679E-3),
     133  L(-1.4429854811877171341298062134712230604279E-3),
     134  L(-1.8753781835651574193938679595797367137975E-3),
     135  L(-2.3618380914922506054347222273705859653658E-3),
     136  L(-2.9015787624124743013946600163375853631299E-3),
     137  L(-3.4938307889254087318399313316921940859043E-3),
     138  L(-4.1378413103128673800485306215154712148146E-3),
     139  L(-4.8328735414488877044289435125365629849599E-3),
     140  L(-5.5782063183564351739381962360253116934243E-3),
     141  L(-6.3731336597098858051938306767880719015261E-3),
     142  L(-7.2169643436165454612058905294782949315193E-3),
     143  L(-8.1090214990427641365934846191367315083867E-3),
     144  L(-9.0486422112807274112838713105168375482480E-3),
     145  L(-1.0035177140880864314674126398350812606841E-2),
     146  L(-1.1067990155502102718064936259435676477423E-2),
     147  L(-1.2146457974158024928196575103115488672416E-2),
     148  L(-1.3269969823361415906628825374158424754308E-2),
     149  L(-1.4437927104692837124388550722759686270765E-2),
     150  L(-1.5649743073340777659901053944852735064621E-2),
     151  L(-1.6904842527181702880599758489058031645317E-2),
     152  L(-1.8202661505988007336096407340750378994209E-2),
     153  L(-1.9542647000370545390701192438691126552961E-2),
     154  L(-2.0924256670080119637427928803038530924742E-2),
     155  L(-2.2346958571309108496179613803760727786257E-2),
     156  L(-2.3810230892650362330447187267648486279460E-2),
     157  L(-2.5313561699385640380910474255652501521033E-2),
     158  L(-2.6856448685790244233704909690165496625399E-2),
     159  L(-2.8438398935154170008519274953860128449036E-2),
     160  L(-3.0058928687233090922411781058956589863039E-2),
     161  L(-3.1717563112854831855692484086486099896614E-2),
     162  L(-3.3413836095418743219397234253475252001090E-2),
     163  L(-3.5147290019036555862676702093393332533702E-2),
     164  L(-3.6917475563073933027920505457688955423688E-2),
     165  L(-3.8723951502862058660874073462456610731178E-2),
     166  L(-4.0566284516358241168330505467000838017425E-2),
     167  L(-4.2444048996543693813649967076598766917965E-2),
     168  L(-4.4356826869355401653098777649745233339196E-2),
     169  L(-4.6304207416957323121106944474331029996141E-2),
     170  L(-4.8285787106164123613318093945035804818364E-2),
     171  L(-5.0301169421838218987124461766244507342648E-2),
     172  L(-5.2349964705088137924875459464622098310997E-2),
     173  L(-5.4431789996103111613753440311680967840214E-2),
     174  L(-5.6546268881465384189752786409400404404794E-2),
     175  L(-5.8693031345788023909329239565012647817664E-2),
     176  L(-6.0871713627532018185577188079210189048340E-2),
     177  L(-6.3081958078862169742820420185833800925568E-2),
     178  L(-6.5323413029406789694910800219643791556918E-2),
     179  L(-6.7595732653791419081537811574227049288168E-2)
     180  };
     181  
     182  /* ln(2) = ln2a + ln2b with extended precision. */
     183  static const _Float128
     184    ln2a = L(6.93145751953125e-1),
     185    ln2b = L(1.4286068203094172321214581765680755001344E-6);
     186  
     187  _Float128
     188  __ieee754_logl(_Float128 x)
     189  {
     190    _Float128 z, y, w;
     191    ieee854_long_double_shape_type u, t;
     192    unsigned int m;
     193    int k, e;
     194  
     195    u.value = x;
     196    m = u.parts32.w0;
     197  
     198    /* Check for IEEE special cases.  */
     199    k = m & 0x7fffffff;
     200    /* log(0) = -infinity. */
     201    if ((k | u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0)
     202      {
     203        return L(-0.5) / ZERO;
     204      }
     205    /* log ( x < 0 ) = NaN */
     206    if (m & 0x80000000)
     207      {
     208        return (x - x) / ZERO;
     209      }
     210    /* log (infinity or NaN) */
     211    if (k >= 0x7fff0000)
     212      {
     213        return x + x;
     214      }
     215  
     216    /* Extract exponent and reduce domain to 0.703125 <= u < 1.40625  */
     217    u.value = __frexpl (x, &e);
     218    m = u.parts32.w0 & 0xffff;
     219    m |= 0x10000;
     220    /* Find lookup table index k from high order bits of the significand. */
     221    if (m < 0x16800)
     222      {
     223        k = (m - 0xff00) >> 9;
     224        /* t is the argument 0.5 + (k+26)/128
     225  	 of the nearest item to u in the lookup table.  */
     226        t.parts32.w0 = 0x3fff0000 + (k << 9);
     227        t.parts32.w1 = 0;
     228        t.parts32.w2 = 0;
     229        t.parts32.w3 = 0;
     230        u.parts32.w0 += 0x10000;
     231        e -= 1;
     232        k += 64;
     233      }
     234    else
     235      {
     236        k = (m - 0xfe00) >> 10;
     237        t.parts32.w0 = 0x3ffe0000 + (k << 10);
     238        t.parts32.w1 = 0;
     239        t.parts32.w2 = 0;
     240        t.parts32.w3 = 0;
     241      }
     242    /* On this interval the table is not used due to cancellation error.  */
     243    if ((x <= L(1.0078125)) && (x >= L(0.9921875)))
     244      {
     245        if (x == 1)
     246  	return 0;
     247        z = x - 1;
     248        k = 64;
     249        t.value  = 1;
     250        e = 0;
     251      }
     252    else
     253      {
     254        /* log(u) = log( t u/t ) = log(t) + log(u/t)
     255  	 log(t) is tabulated in the lookup table.
     256  	 Express log(u/t) = log(1+z),  where z = u/t - 1 = (u-t)/t.
     257  	 cf. Cody & Waite. */
     258        z = (u.value - t.value) / t.value;
     259      }
     260    /* Series expansion of log(1+z).  */
     261    w = z * z;
     262    y = ((((((((((((l15 * z
     263  		  + l14) * z
     264  		 + l13) * z
     265  		+ l12) * z
     266  	       + l11) * z
     267  	      + l10) * z
     268  	     + l9) * z
     269  	    + l8) * z
     270  	   + l7) * z
     271  	  + l6) * z
     272  	 + l5) * z
     273  	+ l4) * z
     274         + l3) * z * w;
     275    y -= 0.5 * w;
     276    y += e * ln2b;  /* Base 2 exponent offset times ln(2).  */
     277    y += z;
     278    y += logtbl[k-26]; /* log(t) - (t-1) */
     279    y += (t.value - 1);
     280    y += e * ln2a;
     281    return y;
     282  }
     283  libm_alias_finite (__ieee754_logl, __logl)