(root)/
glibc-2.38/
sysdeps/
ieee754/
ldbl-128/
e_acosl.c
       1  /*
       2   * ====================================================
       3   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
       4   *
       5   * Developed at SunPro, a Sun Microsystems, Inc. business.
       6   * Permission to use, copy, modify, and distribute this
       7   * software is freely granted, provided that this notice
       8   * is preserved.
       9   * ====================================================
      10   */
      11  
      12  /*
      13     Long double expansions are
      14     Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
      15     and are incorporated herein by permission of the author.  The author
      16     reserves the right to distribute this material elsewhere under different
      17     copying permissions.  These modifications are distributed here under
      18     the following terms:
      19  
      20      This library is free software; you can redistribute it and/or
      21      modify it under the terms of the GNU Lesser General Public
      22      License as published by the Free Software Foundation; either
      23      version 2.1 of the License, or (at your option) any later version.
      24  
      25      This library is distributed in the hope that it will be useful,
      26      but WITHOUT ANY WARRANTY; without even the implied warranty of
      27      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      28      Lesser General Public License for more details.
      29  
      30      You should have received a copy of the GNU Lesser General Public
      31      License along with this library; if not, see
      32      <https://www.gnu.org/licenses/>.  */
      33  
      34  /* __ieee754_acosl(x)
      35   * Method :
      36   *      acos(x)  = pi/2 - asin(x)
      37   *      acos(-x) = pi/2 + asin(x)
      38   * For |x| <= 0.375
      39   *      acos(x) = pi/2 - asin(x)
      40   * Between .375 and .5 the approximation is
      41   *      acos(0.4375 + x) = acos(0.4375) + x P(x) / Q(x)
      42   * Between .5 and .625 the approximation is
      43   *      acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x)
      44   * For x > 0.625,
      45   *      acos(x) = 2 asin(sqrt((1-x)/2))
      46   *      computed with an extended precision square root in the leading term.
      47   * For x < -0.625
      48   *      acos(x) = pi - 2 asin(sqrt((1-|x|)/2))
      49   *
      50   * Special cases:
      51   *      if x is NaN, return x itself;
      52   *      if |x|>1, return NaN with invalid signal.
      53   *
      54   * Functions needed: sqrtl.
      55   */
      56  
      57  #include <math.h>
      58  #include <math_private.h>
      59  #include <libm-alias-finite.h>
      60  
      61  static const _Float128
      62    one = 1,
      63    pio2_hi = L(1.5707963267948966192313216916397514420986),
      64    pio2_lo = L(4.3359050650618905123985220130216759843812E-35),
      65  
      66    /* acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x)
      67       -0.0625 <= x <= 0.0625
      68       peak relative error 3.3e-35  */
      69  
      70    rS0 =  L(5.619049346208901520945464704848780243887E0),
      71    rS1 = L(-4.460504162777731472539175700169871920352E1),
      72    rS2 =  L(1.317669505315409261479577040530751477488E2),
      73    rS3 = L(-1.626532582423661989632442410808596009227E2),
      74    rS4 =  L(3.144806644195158614904369445440583873264E1),
      75    rS5 =  L(9.806674443470740708765165604769099559553E1),
      76    rS6 = L(-5.708468492052010816555762842394927806920E1),
      77    rS7 = L(-1.396540499232262112248553357962639431922E1),
      78    rS8 =  L(1.126243289311910363001762058295832610344E1),
      79    rS9 =  L(4.956179821329901954211277873774472383512E-1),
      80    rS10 = L(-3.313227657082367169241333738391762525780E-1),
      81  
      82    sS0 = L(-4.645814742084009935700221277307007679325E0),
      83    sS1 =  L(3.879074822457694323970438316317961918430E1),
      84    sS2 = L(-1.221986588013474694623973554726201001066E2),
      85    sS3 =  L(1.658821150347718105012079876756201905822E2),
      86    sS4 = L(-4.804379630977558197953176474426239748977E1),
      87    sS5 = L(-1.004296417397316948114344573811562952793E2),
      88    sS6 =  L(7.530281592861320234941101403870010111138E1),
      89    sS7 =  L(1.270735595411673647119592092304357226607E1),
      90    sS8 = L(-1.815144839646376500705105967064792930282E1),
      91    sS9 = L(-7.821597334910963922204235247786840828217E-2),
      92    /* 1.000000000000000000000000000000000000000E0 */
      93  
      94    acosr5625 = L(9.7338991014954640492751132535550279812151E-1),
      95    pimacosr5625 = L(2.1682027434402468335351320579240000860757E0),
      96  
      97    /* acos(0.4375 + x) = acos(0.4375) + x rS(x) / sS(x)
      98       -0.0625 <= x <= 0.0625
      99       peak relative error 2.1e-35  */
     100  
     101    P0 =  L(2.177690192235413635229046633751390484892E0),
     102    P1 = L(-2.848698225706605746657192566166142909573E1),
     103    P2 =  L(1.040076477655245590871244795403659880304E2),
     104    P3 = L(-1.400087608918906358323551402881238180553E2),
     105    P4 =  L(2.221047917671449176051896400503615543757E1),
     106    P5 =  L(9.643714856395587663736110523917499638702E1),
     107    P6 = L(-5.158406639829833829027457284942389079196E1),
     108    P7 = L(-1.578651828337585944715290382181219741813E1),
     109    P8 =  L(1.093632715903802870546857764647931045906E1),
     110    P9 =  L(5.448925479898460003048760932274085300103E-1),
     111    P10 = L(-3.315886001095605268470690485170092986337E-1),
     112    Q0 = L(-1.958219113487162405143608843774587557016E0),
     113    Q1 =  L(2.614577866876185080678907676023269360520E1),
     114    Q2 = L(-9.990858606464150981009763389881793660938E1),
     115    Q3 =  L(1.443958741356995763628660823395334281596E2),
     116    Q4 = L(-3.206441012484232867657763518369723873129E1),
     117    Q5 = L(-1.048560885341833443564920145642588991492E2),
     118    Q6 =  L(6.745883931909770880159915641984874746358E1),
     119    Q7 =  L(1.806809656342804436118449982647641392951E1),
     120    Q8 = L(-1.770150690652438294290020775359580915464E1),
     121    Q9 = L(-5.659156469628629327045433069052560211164E-1),
     122    /* 1.000000000000000000000000000000000000000E0 */
     123  
     124    acosr4375 = L(1.1179797320499710475919903296900511518755E0),
     125    pimacosr4375 = L(2.0236129215398221908706530535894517323217E0),
     126  
     127    /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
     128       0 <= x <= 0.5
     129       peak relative error 1.9e-35  */
     130    pS0 = L(-8.358099012470680544198472400254596543711E2),
     131    pS1 =  L(3.674973957689619490312782828051860366493E3),
     132    pS2 = L(-6.730729094812979665807581609853656623219E3),
     133    pS3 =  L(6.643843795209060298375552684423454077633E3),
     134    pS4 = L(-3.817341990928606692235481812252049415993E3),
     135    pS5 =  L(1.284635388402653715636722822195716476156E3),
     136    pS6 = L(-2.410736125231549204856567737329112037867E2),
     137    pS7 =  L(2.219191969382402856557594215833622156220E1),
     138    pS8 = L(-7.249056260830627156600112195061001036533E-1),
     139    pS9 =  L(1.055923570937755300061509030361395604448E-3),
     140  
     141    qS0 = L(-5.014859407482408326519083440151745519205E3),
     142    qS1 =  L(2.430653047950480068881028451580393430537E4),
     143    qS2 = L(-4.997904737193653607449250593976069726962E4),
     144    qS3 =  L(5.675712336110456923807959930107347511086E4),
     145    qS4 = L(-3.881523118339661268482937768522572588022E4),
     146    qS5 =  L(1.634202194895541569749717032234510811216E4),
     147    qS6 = L(-4.151452662440709301601820849901296953752E3),
     148    qS7 =  L(5.956050864057192019085175976175695342168E2),
     149    qS8 = L(-4.175375777334867025769346564600396877176E1);
     150    /* 1.000000000000000000000000000000000000000E0 */
     151  
     152  _Float128
     153  __ieee754_acosl (_Float128 x)
     154  {
     155    _Float128 z, r, w, p, q, s, t, f2;
     156    int32_t ix, sign;
     157    ieee854_long_double_shape_type u;
     158  
     159    u.value = x;
     160    sign = u.parts32.w0;
     161    ix = sign & 0x7fffffff;
     162    u.parts32.w0 = ix;		/* |x| */
     163    if (ix >= 0x3fff0000)		/* |x| >= 1 */
     164      {
     165        if (ix == 0x3fff0000
     166  	  && (u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0)
     167  	{			/* |x| == 1 */
     168  	  if ((sign & 0x80000000) == 0)
     169  	    return 0.0;		/* acos(1) = 0  */
     170  	  else
     171  	    return (2.0 * pio2_hi) + (2.0 * pio2_lo);	/* acos(-1)= pi */
     172  	}
     173        return (x - x) / (x - x);	/* acos(|x| > 1) is NaN */
     174      }
     175    else if (ix < 0x3ffe0000)	/* |x| < 0.5 */
     176      {
     177        if (ix < 0x3f8e0000)	/* |x| < 2**-113 */
     178  	return pio2_hi + pio2_lo;
     179        if (ix < 0x3ffde000)	/* |x| < .4375 */
     180  	{
     181  	  /* Arcsine of x.  */
     182  	  z = x * x;
     183  	  p = (((((((((pS9 * z
     184  		       + pS8) * z
     185  		      + pS7) * z
     186  		     + pS6) * z
     187  		    + pS5) * z
     188  		   + pS4) * z
     189  		  + pS3) * z
     190  		 + pS2) * z
     191  		+ pS1) * z
     192  	       + pS0) * z;
     193  	  q = (((((((( z
     194  		       + qS8) * z
     195  		     + qS7) * z
     196  		    + qS6) * z
     197  		   + qS5) * z
     198  		  + qS4) * z
     199  		 + qS3) * z
     200  		+ qS2) * z
     201  	       + qS1) * z
     202  	    + qS0;
     203  	  r = x + x * p / q;
     204  	  z = pio2_hi - (r - pio2_lo);
     205  	  return z;
     206  	}
     207        /* .4375 <= |x| < .5 */
     208        t = u.value - L(0.4375);
     209        p = ((((((((((P10 * t
     210  		    + P9) * t
     211  		   + P8) * t
     212  		  + P7) * t
     213  		 + P6) * t
     214  		+ P5) * t
     215  	       + P4) * t
     216  	      + P3) * t
     217  	     + P2) * t
     218  	    + P1) * t
     219  	   + P0) * t;
     220  
     221        q = (((((((((t
     222  		   + Q9) * t
     223  		  + Q8) * t
     224  		 + Q7) * t
     225  		+ Q6) * t
     226  	       + Q5) * t
     227  	      + Q4) * t
     228  	     + Q3) * t
     229  	    + Q2) * t
     230  	   + Q1) * t
     231  	+ Q0;
     232        r = p / q;
     233        if (sign & 0x80000000)
     234  	r = pimacosr4375 - r;
     235        else
     236  	r = acosr4375 + r;
     237        return r;
     238      }
     239    else if (ix < 0x3ffe4000)	/* |x| < 0.625 */
     240      {
     241        t = u.value - L(0.5625);
     242        p = ((((((((((rS10 * t
     243  		    + rS9) * t
     244  		   + rS8) * t
     245  		  + rS7) * t
     246  		 + rS6) * t
     247  		+ rS5) * t
     248  	       + rS4) * t
     249  	      + rS3) * t
     250  	     + rS2) * t
     251  	    + rS1) * t
     252  	   + rS0) * t;
     253  
     254        q = (((((((((t
     255  		   + sS9) * t
     256  		  + sS8) * t
     257  		 + sS7) * t
     258  		+ sS6) * t
     259  	       + sS5) * t
     260  	      + sS4) * t
     261  	     + sS3) * t
     262  	    + sS2) * t
     263  	   + sS1) * t
     264  	+ sS0;
     265        if (sign & 0x80000000)
     266  	r = pimacosr5625 - p / q;
     267        else
     268  	r = acosr5625 + p / q;
     269        return r;
     270      }
     271    else
     272      {				/* |x| >= .625 */
     273        z = (one - u.value) * 0.5;
     274        s = sqrtl (z);
     275        /* Compute an extended precision square root from
     276  	 the Newton iteration  s -> 0.5 * (s + z / s).
     277  	 The change w from s to the improved value is
     278  	    w = 0.5 * (s + z / s) - s  = (s^2 + z)/2s - s = (z - s^2)/2s.
     279  	  Express s = f1 + f2 where f1 * f1 is exactly representable.
     280  	  w = (z - s^2)/2s = (z - f1^2 - 2 f1 f2 - f2^2)/2s .
     281  	  s + w has extended precision.  */
     282        u.value = s;
     283        u.parts32.w2 = 0;
     284        u.parts32.w3 = 0;
     285        f2 = s - u.value;
     286        w = z - u.value * u.value;
     287        w = w - 2.0 * u.value * f2;
     288        w = w - f2 * f2;
     289        w = w / (2.0 * s);
     290        /* Arcsine of s.  */
     291        p = (((((((((pS9 * z
     292  		   + pS8) * z
     293  		  + pS7) * z
     294  		 + pS6) * z
     295  		+ pS5) * z
     296  	       + pS4) * z
     297  	      + pS3) * z
     298  	     + pS2) * z
     299  	    + pS1) * z
     300  	   + pS0) * z;
     301        q = (((((((( z
     302  		   + qS8) * z
     303  		 + qS7) * z
     304  		+ qS6) * z
     305  	       + qS5) * z
     306  	      + qS4) * z
     307  	     + qS3) * z
     308  	    + qS2) * z
     309  	   + qS1) * z
     310  	+ qS0;
     311        r = s + (w + s * p / q);
     312  
     313        if (sign & 0x80000000)
     314  	w = pio2_hi + (pio2_lo - r);
     315        else
     316  	w = r;
     317        return 2.0 * w;
     318      }
     319  }
     320  libm_alias_finite (__ieee754_acosl, __acosl)