(root)/
glibc-2.38/
sysdeps/
ieee754/
flt-32/
s_erff.c
       1  /* s_erff.c -- float version of s_erf.c.
       2   */
       3  
       4  /*
       5   * ====================================================
       6   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
       7   *
       8   * Developed at SunPro, a Sun Microsystems, Inc. business.
       9   * Permission to use, copy, modify, and distribute this
      10   * software is freely granted, provided that this notice
      11   * is preserved.
      12   * ====================================================
      13   */
      14  
      15  #if defined(LIBM_SCCS) && !defined(lint)
      16  static char rcsid[] = "$NetBSD: s_erff.c,v 1.4 1995/05/10 20:47:07 jtc Exp $";
      17  #endif
      18  
      19  #include <errno.h>
      20  #include <float.h>
      21  #include <math.h>
      22  #include <math-narrow-eval.h>
      23  #include <math_private.h>
      24  #include <math-underflow.h>
      25  #include <libm-alias-float.h>
      26  #include <fix-int-fp-convert-zero.h>
      27  
      28  static const float
      29  tiny	    = 1e-30,
      30  half=  5.0000000000e-01, /* 0x3F000000 */
      31  one =  1.0000000000e+00, /* 0x3F800000 */
      32  two =  2.0000000000e+00, /* 0x40000000 */
      33  	/* c = (subfloat)0.84506291151 */
      34  erx =  8.4506291151e-01, /* 0x3f58560b */
      35  /*
      36   * Coefficients for approximation to  erf on [0,0.84375]
      37   */
      38  efx =  1.2837916613e-01, /* 0x3e0375d4 */
      39  pp0  =  1.2837916613e-01, /* 0x3e0375d4 */
      40  pp1  = -3.2504209876e-01, /* 0xbea66beb */
      41  pp2  = -2.8481749818e-02, /* 0xbce9528f */
      42  pp3  = -5.7702702470e-03, /* 0xbbbd1489 */
      43  pp4  = -2.3763017452e-05, /* 0xb7c756b1 */
      44  qq1  =  3.9791721106e-01, /* 0x3ecbbbce */
      45  qq2  =  6.5022252500e-02, /* 0x3d852a63 */
      46  qq3  =  5.0813062117e-03, /* 0x3ba68116 */
      47  qq4  =  1.3249473704e-04, /* 0x390aee49 */
      48  qq5  = -3.9602282413e-06, /* 0xb684e21a */
      49  /*
      50   * Coefficients for approximation to  erf  in [0.84375,1.25]
      51   */
      52  pa0  = -2.3621185683e-03, /* 0xbb1acdc6 */
      53  pa1  =  4.1485610604e-01, /* 0x3ed46805 */
      54  pa2  = -3.7220788002e-01, /* 0xbebe9208 */
      55  pa3  =  3.1834661961e-01, /* 0x3ea2fe54 */
      56  pa4  = -1.1089469492e-01, /* 0xbde31cc2 */
      57  pa5  =  3.5478305072e-02, /* 0x3d1151b3 */
      58  pa6  = -2.1663755178e-03, /* 0xbb0df9c0 */
      59  qa1  =  1.0642088205e-01, /* 0x3dd9f331 */
      60  qa2  =  5.4039794207e-01, /* 0x3f0a5785 */
      61  qa3  =  7.1828655899e-02, /* 0x3d931ae7 */
      62  qa4  =  1.2617121637e-01, /* 0x3e013307 */
      63  qa5  =  1.3637083583e-02, /* 0x3c5f6e13 */
      64  qa6  =  1.1984500103e-02, /* 0x3c445aa3 */
      65  /*
      66   * Coefficients for approximation to  erfc in [1.25,1/0.35]
      67   */
      68  ra0  = -9.8649440333e-03, /* 0xbc21a093 */
      69  ra1  = -6.9385856390e-01, /* 0xbf31a0b7 */
      70  ra2  = -1.0558626175e+01, /* 0xc128f022 */
      71  ra3  = -6.2375331879e+01, /* 0xc2798057 */
      72  ra4  = -1.6239666748e+02, /* 0xc322658c */
      73  ra5  = -1.8460508728e+02, /* 0xc3389ae7 */
      74  ra6  = -8.1287437439e+01, /* 0xc2a2932b */
      75  ra7  = -9.8143291473e+00, /* 0xc11d077e */
      76  sa1  =  1.9651271820e+01, /* 0x419d35ce */
      77  sa2  =  1.3765776062e+02, /* 0x4309a863 */
      78  sa3  =  4.3456588745e+02, /* 0x43d9486f */
      79  sa4  =  6.4538726807e+02, /* 0x442158c9 */
      80  sa5  =  4.2900814819e+02, /* 0x43d6810b */
      81  sa6  =  1.0863500214e+02, /* 0x42d9451f */
      82  sa7  =  6.5702495575e+00, /* 0x40d23f7c */
      83  sa8  = -6.0424413532e-02, /* 0xbd777f97 */
      84  /*
      85   * Coefficients for approximation to  erfc in [1/.35,28]
      86   */
      87  rb0  = -9.8649431020e-03, /* 0xbc21a092 */
      88  rb1  = -7.9928326607e-01, /* 0xbf4c9dd4 */
      89  rb2  = -1.7757955551e+01, /* 0xc18e104b */
      90  rb3  = -1.6063638306e+02, /* 0xc320a2ea */
      91  rb4  = -6.3756646729e+02, /* 0xc41f6441 */
      92  rb5  = -1.0250950928e+03, /* 0xc480230b */
      93  rb6  = -4.8351919556e+02, /* 0xc3f1c275 */
      94  sb1  =  3.0338060379e+01, /* 0x41f2b459 */
      95  sb2  =  3.2579251099e+02, /* 0x43a2e571 */
      96  sb3  =  1.5367296143e+03, /* 0x44c01759 */
      97  sb4  =  3.1998581543e+03, /* 0x4547fdbb */
      98  sb5  =  2.5530502930e+03, /* 0x451f90ce */
      99  sb6  =  4.7452853394e+02, /* 0x43ed43a7 */
     100  sb7  = -2.2440952301e+01; /* 0xc1b38712 */
     101  
     102  float __erff(float x)
     103  {
     104  	int32_t hx,ix,i;
     105  	float R,S,P,Q,s,y,z,r;
     106  	GET_FLOAT_WORD(hx,x);
     107  	ix = hx&0x7fffffff;
     108  	if(ix>=0x7f800000) {		/* erf(nan)=nan */
     109  	    i = ((uint32_t)hx>>31)<<1;
     110  	    return (float)(1-i)+one/x;	/* erf(+-inf)=+-1 */
     111  	}
     112  
     113  	if(ix < 0x3f580000) {		/* |x|<0.84375 */
     114  	    if(ix < 0x31800000) { 	/* |x|<2**-28 */
     115  	        if (ix < 0x04000000)
     116  		  {
     117  		    /* Avoid spurious underflow.  */
     118  		    float ret = 0.0625f * (16.0f * x + (16.0f * efx) * x);
     119  		    math_check_force_underflow (ret);
     120  		    return ret;
     121  		  }
     122  		return x + efx*x;
     123  	    }
     124  	    z = x*x;
     125  	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
     126  	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
     127  	    y = r/s;
     128  	    return x + x*y;
     129  	}
     130  	if(ix < 0x3fa00000) {		/* 0.84375 <= |x| < 1.25 */
     131  	    s = fabsf(x)-one;
     132  	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
     133  	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
     134  	    if(hx>=0) return erx + P/Q; else return -erx - P/Q;
     135  	}
     136  	if (ix >= 0x40c00000) {		/* inf>|x|>=6 */
     137  	    if(hx>=0) return one-tiny; else return tiny-one;
     138  	}
     139  	x = fabsf(x);
     140   	s = one/(x*x);
     141  	if(ix< 0x4036DB6E) {	/* |x| < 1/0.35 */
     142  	    R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
     143  				ra5+s*(ra6+s*ra7))))));
     144  	    S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
     145  				sa5+s*(sa6+s*(sa7+s*sa8)))))));
     146  	} else {	/* |x| >= 1/0.35 */
     147  	    R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
     148  				rb5+s*rb6)))));
     149  	    S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
     150  				sb5+s*(sb6+s*sb7))))));
     151  	}
     152  	GET_FLOAT_WORD(ix,x);
     153  	SET_FLOAT_WORD(z,ix&0xfffff000);
     154  	r  =  __ieee754_expf(-z*z-(float)0.5625)*__ieee754_expf((z-x)*(z+x)+R/S);
     155  	if(hx>=0) return one-r/x; else return  r/x-one;
     156  }
     157  libm_alias_float (__erf, erf)
     158  
     159  float __erfcf(float x)
     160  {
     161  	int32_t hx,ix;
     162  	float R,S,P,Q,s,y,z,r;
     163  	GET_FLOAT_WORD(hx,x);
     164  	ix = hx&0x7fffffff;
     165  	if(ix>=0x7f800000) {			/* erfc(nan)=nan */
     166  						/* erfc(+-inf)=0,2 */
     167  	    float ret = (float)(((uint32_t)hx>>31)<<1)+one/x;
     168  	    if (FIX_INT_FP_CONVERT_ZERO && ret == 0.0f)
     169  	      return 0.0f;
     170  	    return ret;
     171  	}
     172  
     173  	if(ix < 0x3f580000) {		/* |x|<0.84375 */
     174  	    if(ix < 0x32800000)  	/* |x|<2**-26 */
     175  		return one-x;
     176  	    z = x*x;
     177  	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
     178  	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
     179  	    y = r/s;
     180  	    if(hx < 0x3e800000) {  	/* x<1/4 */
     181  		return one-(x+x*y);
     182  	    } else {
     183  		r = x*y;
     184  		r += (x-half);
     185  	        return half - r ;
     186  	    }
     187  	}
     188  	if(ix < 0x3fa00000) {		/* 0.84375 <= |x| < 1.25 */
     189  	    s = fabsf(x)-one;
     190  	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
     191  	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
     192  	    if(hx>=0) {
     193  	        z  = one-erx; return z - P/Q;
     194  	    } else {
     195  		z = erx+P/Q; return one+z;
     196  	    }
     197  	}
     198  	if (ix < 0x41e00000) {		/* |x|<28 */
     199  	    x = fabsf(x);
     200   	    s = one/(x*x);
     201  	    if(ix< 0x4036DB6D) {	/* |x| < 1/.35 ~ 2.857143*/
     202  	        R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
     203  				ra5+s*(ra6+s*ra7))))));
     204  	        S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
     205  				sa5+s*(sa6+s*(sa7+s*sa8)))))));
     206  	    } else {			/* |x| >= 1/.35 ~ 2.857143 */
     207  		if(hx<0&&ix>=0x40c00000) return two-tiny;/* x < -6 */
     208  	        R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
     209  				rb5+s*rb6)))));
     210  	        S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
     211  				sb5+s*(sb6+s*sb7))))));
     212  	    }
     213  	    GET_FLOAT_WORD(ix,x);
     214  	    SET_FLOAT_WORD(z,ix&0xffffe000);
     215  	    r  =  __ieee754_expf(-z*z-(float)0.5625)*
     216  			__ieee754_expf((z-x)*(z+x)+R/S);
     217  	    if(hx>0) {
     218  		float ret = math_narrow_eval (r/x);
     219  		if (ret == 0)
     220  		    __set_errno (ERANGE);
     221  		return ret;
     222  	    } else
     223  		return two-r/x;
     224  	} else {
     225  	    if(hx>0) {
     226  		__set_errno (ERANGE);
     227  		return tiny*tiny;
     228  	    } else
     229  		return two-tiny;
     230  	}
     231  }
     232  libm_alias_float (__erfc, erfc)