(root)/
glibc-2.38/
sysdeps/
ieee754/
flt-32/
lgamma_negf.c
       1  /* lgammaf expanding around zeros.
       2     Copyright (C) 2015-2023 Free Software Foundation, Inc.
       3     This file is part of the GNU C Library.
       4  
       5     The GNU C Library is free software; you can redistribute it and/or
       6     modify it under the terms of the GNU Lesser General Public
       7     License as published by the Free Software Foundation; either
       8     version 2.1 of the License, or (at your option) any later version.
       9  
      10     The GNU C Library is distributed in the hope that it will be useful,
      11     but WITHOUT ANY WARRANTY; without even the implied warranty of
      12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      13     Lesser General Public License for more details.
      14  
      15     You should have received a copy of the GNU Lesser General Public
      16     License along with the GNU C Library; if not, see
      17     <https://www.gnu.org/licenses/>.  */
      18  
      19  #include <float.h>
      20  #include <math.h>
      21  #include <math-narrow-eval.h>
      22  #include <math_private.h>
      23  #include <fenv_private.h>
      24  
      25  static const float lgamma_zeros[][2] =
      26    {
      27      { -0x2.74ff94p+0f, 0x1.3fe0f2p-24f },
      28      { -0x2.bf682p+0f, -0x1.437b2p-24f },
      29      { -0x3.24c1b8p+0f, 0x6.c34cap-28f },
      30      { -0x3.f48e2cp+0f, 0x1.707a04p-24f },
      31      { -0x4.0a13ap+0f, 0x1.e99aap-24f },
      32      { -0x4.fdd5ep+0f, 0x1.64454p-24f },
      33      { -0x5.021a98p+0f, 0x2.03d248p-24f },
      34      { -0x5.ffa4cp+0f, 0x2.9b82fcp-24f },
      35      { -0x6.005ac8p+0f, -0x1.625f24p-24f },
      36      { -0x6.fff3p+0f, 0x2.251e44p-24f },
      37      { -0x7.000dp+0f, 0x8.48078p-28f },
      38      { -0x7.fffe6p+0f, 0x1.fa98c4p-28f },
      39      { -0x8.0001ap+0f, -0x1.459fcap-28f },
      40      { -0x8.ffffdp+0f, -0x1.c425e8p-24f },
      41      { -0x9.00003p+0f, 0x1.c44b82p-24f },
      42      { -0xap+0f, 0x4.9f942p-24f },
      43      { -0xap+0f, -0x4.9f93b8p-24f },
      44      { -0xbp+0f, 0x6.b9916p-28f },
      45      { -0xbp+0f, -0x6.b9915p-28f },
      46      { -0xcp+0f, 0x8.f76c8p-32f },
      47      { -0xcp+0f, -0x8.f76c7p-32f },
      48      { -0xdp+0f, 0xb.09231p-36f },
      49      { -0xdp+0f, -0xb.09231p-36f },
      50      { -0xep+0f, 0xc.9cba5p-40f },
      51      { -0xep+0f, -0xc.9cba5p-40f },
      52      { -0xfp+0f, 0xd.73f9fp-44f },
      53    };
      54  
      55  static const float e_hi = 0x2.b7e15p+0f, e_lo = 0x1.628aeep-24f;
      56  
      57  /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) in Stirling's
      58     approximation to lgamma function.  */
      59  
      60  static const float lgamma_coeff[] =
      61    {
      62      0x1.555556p-4f,
      63      -0xb.60b61p-12f,
      64      0x3.403404p-12f,
      65    };
      66  
      67  #define NCOEFF (sizeof (lgamma_coeff) / sizeof (lgamma_coeff[0]))
      68  
      69  /* Polynomial approximations to (|gamma(x)|-1)(x-n)/(x-x0), where n is
      70     the integer end-point of the half-integer interval containing x and
      71     x0 is the zero of lgamma in that half-integer interval.  Each
      72     polynomial is expressed in terms of x-xm, where xm is the midpoint
      73     of the interval for which the polynomial applies.  */
      74  
      75  static const float poly_coeff[] =
      76    {
      77      /* Interval [-2.125, -2] (polynomial degree 5).  */
      78      -0x1.0b71c6p+0f,
      79      -0xc.73a1ep-4f,
      80      -0x1.ec8462p-4f,
      81      -0xe.37b93p-4f,
      82      -0x1.02ed36p-4f,
      83      -0xe.cbe26p-4f,
      84      /* Interval [-2.25, -2.125] (polynomial degree 5).  */
      85      -0xf.29309p-4f,
      86      -0xc.a5cfep-4f,
      87      0x3.9c93fcp-4f,
      88      -0x1.02a2fp+0f,
      89      0x9.896bep-4f,
      90      -0x1.519704p+0f,
      91      /* Interval [-2.375, -2.25] (polynomial degree 5).  */
      92      -0xd.7d28dp-4f,
      93      -0xe.6964cp-4f,
      94      0xb.0d4f1p-4f,
      95      -0x1.9240aep+0f,
      96      0x1.dadabap+0f,
      97      -0x3.1778c4p+0f,
      98      /* Interval [-2.5, -2.375] (polynomial degree 6).  */
      99      -0xb.74ea2p-4f,
     100      -0x1.2a82cp+0f,
     101      0x1.880234p+0f,
     102      -0x3.320c4p+0f,
     103      0x5.572a38p+0f,
     104      -0x9.f92bap+0f,
     105      0x1.1c347ep+4f,
     106      /* Interval [-2.625, -2.5] (polynomial degree 6).  */
     107      -0x3.d10108p-4f,
     108      0x1.cd5584p+0f,
     109      0x3.819c24p+0f,
     110      0x6.84cbb8p+0f,
     111      0xb.bf269p+0f,
     112      0x1.57fb12p+4f,
     113      0x2.7b9854p+4f,
     114      /* Interval [-2.75, -2.625] (polynomial degree 6).  */
     115      -0x6.b5d25p-4f,
     116      0x1.28d604p+0f,
     117      0x1.db6526p+0f,
     118      0x2.e20b38p+0f,
     119      0x4.44c378p+0f,
     120      0x6.62a08p+0f,
     121      0x9.6db3ap+0f,
     122      /* Interval [-2.875, -2.75] (polynomial degree 5).  */
     123      -0x8.a41b2p-4f,
     124      0xc.da87fp-4f,
     125      0x1.147312p+0f,
     126      0x1.7617dap+0f,
     127      0x1.d6c13p+0f,
     128      0x2.57a358p+0f,
     129      /* Interval [-3, -2.875] (polynomial degree 5).  */
     130      -0xa.046d6p-4f,
     131      0x9.70b89p-4f,
     132      0xa.a89a6p-4f,
     133      0xd.2f2d8p-4f,
     134      0xd.e32b4p-4f,
     135      0xf.fb741p-4f,
     136    };
     137  
     138  static const size_t poly_deg[] =
     139    {
     140      5,
     141      5,
     142      5,
     143      6,
     144      6,
     145      6,
     146      5,
     147      5,
     148    };
     149  
     150  static const size_t poly_end[] =
     151    {
     152      5,
     153      11,
     154      17,
     155      24,
     156      31,
     157      38,
     158      44,
     159      50,
     160    };
     161  
     162  /* Compute sin (pi * X) for -0.25 <= X <= 0.5.  */
     163  
     164  static float
     165  lg_sinpi (float x)
     166  {
     167    if (x <= 0.25f)
     168      return __sinf (M_PIf * x);
     169    else
     170      return __cosf (M_PIf * (0.5f - x));
     171  }
     172  
     173  /* Compute cos (pi * X) for -0.25 <= X <= 0.5.  */
     174  
     175  static float
     176  lg_cospi (float x)
     177  {
     178    if (x <= 0.25f)
     179      return __cosf (M_PIf * x);
     180    else
     181      return __sinf (M_PIf * (0.5f - x));
     182  }
     183  
     184  /* Compute cot (pi * X) for -0.25 <= X <= 0.5.  */
     185  
     186  static float
     187  lg_cotpi (float x)
     188  {
     189    return lg_cospi (x) / lg_sinpi (x);
     190  }
     191  
     192  /* Compute lgamma of a negative argument -15 < X < -2, setting
     193     *SIGNGAMP accordingly.  */
     194  
     195  float
     196  __lgamma_negf (float x, int *signgamp)
     197  {
     198    /* Determine the half-integer region X lies in, handle exact
     199       integers and determine the sign of the result.  */
     200    int i = floorf (-2 * x);
     201    if ((i & 1) == 0 && i == -2 * x)
     202      return 1.0f / 0.0f;
     203    float xn = ((i & 1) == 0 ? -i / 2 : (-i - 1) / 2);
     204    i -= 4;
     205    *signgamp = ((i & 2) == 0 ? -1 : 1);
     206  
     207    SET_RESTORE_ROUNDF (FE_TONEAREST);
     208  
     209    /* Expand around the zero X0 = X0_HI + X0_LO.  */
     210    float x0_hi = lgamma_zeros[i][0], x0_lo = lgamma_zeros[i][1];
     211    float xdiff = x - x0_hi - x0_lo;
     212  
     213    /* For arguments in the range -3 to -2, use polynomial
     214       approximations to an adjusted version of the gamma function.  */
     215    if (i < 2)
     216      {
     217        int j = floorf (-8 * x) - 16;
     218        float xm = (-33 - 2 * j) * 0.0625f;
     219        float x_adj = x - xm;
     220        size_t deg = poly_deg[j];
     221        size_t end = poly_end[j];
     222        float g = poly_coeff[end];
     223        for (size_t j = 1; j <= deg; j++)
     224  	g = g * x_adj + poly_coeff[end - j];
     225        return __log1pf (g * xdiff / (x - xn));
     226      }
     227  
     228    /* The result we want is log (sinpi (X0) / sinpi (X))
     229       + log (gamma (1 - X0) / gamma (1 - X)).  */
     230    float x_idiff = fabsf (xn - x), x0_idiff = fabsf (xn - x0_hi - x0_lo);
     231    float log_sinpi_ratio;
     232    if (x0_idiff < x_idiff * 0.5f)
     233      /* Use log not log1p to avoid inaccuracy from log1p of arguments
     234         close to -1.  */
     235      log_sinpi_ratio = __ieee754_logf (lg_sinpi (x0_idiff)
     236  				      / lg_sinpi (x_idiff));
     237    else
     238      {
     239        /* Use log1p not log to avoid inaccuracy from log of arguments
     240  	 close to 1.  X0DIFF2 has positive sign if X0 is further from
     241  	 XN than X is from XN, negative sign otherwise.  */
     242        float x0diff2 = ((i & 1) == 0 ? xdiff : -xdiff) * 0.5f;
     243        float sx0d2 = lg_sinpi (x0diff2);
     244        float cx0d2 = lg_cospi (x0diff2);
     245        log_sinpi_ratio = __log1pf (2 * sx0d2
     246  				  * (-sx0d2 + cx0d2 * lg_cotpi (x_idiff)));
     247      }
     248  
     249    float log_gamma_ratio;
     250    float y0 = math_narrow_eval (1 - x0_hi);
     251    float y0_eps = -x0_hi + (1 - y0) - x0_lo;
     252    float y = math_narrow_eval (1 - x);
     253    float y_eps = -x + (1 - y);
     254    /* We now wish to compute LOG_GAMMA_RATIO
     255       = log (gamma (Y0 + Y0_EPS) / gamma (Y + Y_EPS)).  XDIFF
     256       accurately approximates the difference Y0 + Y0_EPS - Y -
     257       Y_EPS.  Use Stirling's approximation.  */
     258    float log_gamma_high
     259      = (xdiff * __log1pf ((y0 - e_hi - e_lo + y0_eps) / e_hi)
     260         + (y - 0.5f + y_eps) * __log1pf (xdiff / y));
     261    /* Compute the sum of (B_2k / 2k(2k-1))(Y0^-(2k-1) - Y^-(2k-1)).  */
     262    float y0r = 1 / y0, yr = 1 / y;
     263    float y0r2 = y0r * y0r, yr2 = yr * yr;
     264    float rdiff = -xdiff / (y * y0);
     265    float bterm[NCOEFF];
     266    float dlast = rdiff, elast = rdiff * yr * (yr + y0r);
     267    bterm[0] = dlast * lgamma_coeff[0];
     268    for (size_t j = 1; j < NCOEFF; j++)
     269      {
     270        float dnext = dlast * y0r2 + elast;
     271        float enext = elast * yr2;
     272        bterm[j] = dnext * lgamma_coeff[j];
     273        dlast = dnext;
     274        elast = enext;
     275      }
     276    float log_gamma_low = 0;
     277    for (size_t j = 0; j < NCOEFF; j++)
     278      log_gamma_low += bterm[NCOEFF - 1 - j];
     279    log_gamma_ratio = log_gamma_high + log_gamma_low;
     280  
     281    return log_sinpi_ratio + log_gamma_ratio;
     282  }