(root)/
glibc-2.38/
sysdeps/
ieee754/
flt-32/
e_powf.c
       1  /* Single-precision pow function.
       2     Copyright (C) 2017-2023 Free Software Foundation, Inc.
       3     This file is part of the GNU C Library.
       4  
       5     The GNU C Library is free software; you can redistribute it and/or
       6     modify it under the terms of the GNU Lesser General Public
       7     License as published by the Free Software Foundation; either
       8     version 2.1 of the License, or (at your option) any later version.
       9  
      10     The GNU C Library is distributed in the hope that it will be useful,
      11     but WITHOUT ANY WARRANTY; without even the implied warranty of
      12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      13     Lesser General Public License for more details.
      14  
      15     You should have received a copy of the GNU Lesser General Public
      16     License along with the GNU C Library; if not, see
      17     <https://www.gnu.org/licenses/>.  */
      18  
      19  #include <math.h>
      20  #include <math-barriers.h>
      21  #include <math-narrow-eval.h>
      22  #include <stdint.h>
      23  #include <libm-alias-finite.h>
      24  #include <libm-alias-float.h>
      25  #include "math_config.h"
      26  
      27  /*
      28  POWF_LOG2_POLY_ORDER = 5
      29  EXP2F_TABLE_BITS = 5
      30  
      31  ULP error: 0.82 (~ 0.5 + relerr*2^24)
      32  relerr: 1.27 * 2^-26 (Relative error ~= 128*Ln2*relerr_log2 + relerr_exp2)
      33  relerr_log2: 1.83 * 2^-33 (Relative error of logx.)
      34  relerr_exp2: 1.69 * 2^-34 (Relative error of exp2(ylogx).)
      35  */
      36  
      37  #define N (1 << POWF_LOG2_TABLE_BITS)
      38  #define T __powf_log2_data.tab
      39  #define A __powf_log2_data.poly
      40  #define OFF 0x3f330000
      41  
      42  /* Subnormal input is normalized so ix has negative biased exponent.
      43     Output is multiplied by N (POWF_SCALE) if TOINT_INTRINICS is set.  */
      44  static inline double_t
      45  log2_inline (uint32_t ix)
      46  {
      47    /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
      48    double_t z, r, r2, r4, p, q, y, y0, invc, logc;
      49    uint32_t iz, top, tmp;
      50    int k, i;
      51  
      52    /* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
      53       The range is split into N subintervals.
      54       The ith subinterval contains z and c is near its center.  */
      55    tmp = ix - OFF;
      56    i = (tmp >> (23 - POWF_LOG2_TABLE_BITS)) % N;
      57    top = tmp & 0xff800000;
      58    iz = ix - top;
      59    k = (int32_t) top >> (23 - POWF_SCALE_BITS); /* arithmetic shift */
      60    invc = T[i].invc;
      61    logc = T[i].logc;
      62    z = (double_t) asfloat (iz);
      63  
      64    /* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
      65    r = z * invc - 1;
      66    y0 = logc + (double_t) k;
      67  
      68    /* Pipelined polynomial evaluation to approximate log1p(r)/ln2.  */
      69    r2 = r * r;
      70    y = A[0] * r + A[1];
      71    p = A[2] * r + A[3];
      72    r4 = r2 * r2;
      73    q = A[4] * r + y0;
      74    q = p * r2 + q;
      75    y = y * r4 + q;
      76    return y;
      77  }
      78  
      79  #undef N
      80  #undef T
      81  #define N (1 << EXP2F_TABLE_BITS)
      82  #define T __exp2f_data.tab
      83  #define SIGN_BIAS (1 << (EXP2F_TABLE_BITS + 11))
      84  
      85  /* The output of log2 and thus the input of exp2 is either scaled by N
      86     (in case of fast toint intrinsics) or not.  The unscaled xd must be
      87     in [-1021,1023], sign_bias sets the sign of the result.  */
      88  static inline double_t
      89  exp2_inline (double_t xd, uint32_t sign_bias)
      90  {
      91    uint64_t ki, ski, t;
      92    /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
      93    double_t kd, z, r, r2, y, s;
      94  
      95  #if TOINT_INTRINSICS
      96  # define C __exp2f_data.poly_scaled
      97    /* N*x = k + r with r in [-1/2, 1/2] */
      98    kd = roundtoint (xd); /* k */
      99    ki = converttoint (xd);
     100  #else
     101  # define C __exp2f_data.poly
     102  # define SHIFT __exp2f_data.shift_scaled
     103    /* x = k/N + r with r in [-1/(2N), 1/(2N)] */
     104    kd = (double) (xd + SHIFT); /* Rounding to double precision is required.  */
     105    ki = asuint64 (kd);
     106    kd -= SHIFT; /* k/N */
     107  #endif
     108    r = xd - kd;
     109  
     110    /* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
     111    t = T[ki % N];
     112    ski = ki + sign_bias;
     113    t += ski << (52 - EXP2F_TABLE_BITS);
     114    s = asdouble (t);
     115    z = C[0] * r + C[1];
     116    r2 = r * r;
     117    y = C[2] * r + 1;
     118    y = z * r2 + y;
     119    y = y * s;
     120    return y;
     121  }
     122  
     123  /* Returns 0 if not int, 1 if odd int, 2 if even int.  The argument is
     124     the bit representation of a non-zero finite floating-point value.  */
     125  static inline int
     126  checkint (uint32_t iy)
     127  {
     128    int e = iy >> 23 & 0xff;
     129    if (e < 0x7f)
     130      return 0;
     131    if (e > 0x7f + 23)
     132      return 2;
     133    if (iy & ((1 << (0x7f + 23 - e)) - 1))
     134      return 0;
     135    if (iy & (1 << (0x7f + 23 - e)))
     136      return 1;
     137    return 2;
     138  }
     139  
     140  static inline int
     141  zeroinfnan (uint32_t ix)
     142  {
     143    return 2 * ix - 1 >= 2u * 0x7f800000 - 1;
     144  }
     145  
     146  float
     147  __powf (float x, float y)
     148  {
     149    uint32_t sign_bias = 0;
     150    uint32_t ix, iy;
     151  
     152    ix = asuint (x);
     153    iy = asuint (y);
     154    if (__glibc_unlikely (ix - 0x00800000 >= 0x7f800000 - 0x00800000
     155  			|| zeroinfnan (iy)))
     156      {
     157        /* Either (x < 0x1p-126 or inf or nan) or (y is 0 or inf or nan).  */
     158        if (__glibc_unlikely (zeroinfnan (iy)))
     159  	{
     160  	  if (2 * iy == 0)
     161  	    return issignaling (x) ? x + y : 1.0f;
     162  	  if (ix == 0x3f800000)
     163  	    return issignaling (y) ? x + y : 1.0f;
     164  	  if (2 * ix > 2u * 0x7f800000 || 2 * iy > 2u * 0x7f800000)
     165  	    return x + y;
     166  	  if (2 * ix == 2 * 0x3f800000)
     167  	    return 1.0f;
     168  	  if ((2 * ix < 2 * 0x3f800000) == !(iy & 0x80000000))
     169  	    return 0.0f; /* |x|<1 && y==inf or |x|>1 && y==-inf.  */
     170  	  return y * y;
     171  	}
     172        if (__glibc_unlikely (zeroinfnan (ix)))
     173  	{
     174  	  float_t x2 = x * x;
     175  	  if (ix & 0x80000000 && checkint (iy) == 1)
     176  	    {
     177  	      x2 = -x2;
     178  	      sign_bias = 1;
     179  	    }
     180  #if WANT_ERRNO
     181  	  if (2 * ix == 0 && iy & 0x80000000)
     182  	    return __math_divzerof (sign_bias);
     183  #endif
     184  	  return iy & 0x80000000 ? 1 / x2 : x2;
     185  	}
     186        /* x and y are non-zero finite.  */
     187        if (ix & 0x80000000)
     188  	{
     189  	  /* Finite x < 0.  */
     190  	  int yint = checkint (iy);
     191  	  if (yint == 0)
     192  	    return __math_invalidf (x);
     193  	  if (yint == 1)
     194  	    sign_bias = SIGN_BIAS;
     195  	  ix &= 0x7fffffff;
     196  	}
     197        if (ix < 0x00800000)
     198  	{
     199  	  /* Normalize subnormal x so exponent becomes negative.  */
     200  	  ix = asuint (x * 0x1p23f);
     201  	  ix &= 0x7fffffff;
     202  	  ix -= 23 << 23;
     203  	}
     204      }
     205    double_t logx = log2_inline (ix);
     206    double_t ylogx = y * logx; /* Note: cannot overflow, y is single prec.  */
     207    if (__glibc_unlikely ((asuint64 (ylogx) >> 47 & 0xffff)
     208  			>= asuint64 (126.0 * POWF_SCALE) >> 47))
     209      {
     210        /* |y*log(x)| >= 126.  */
     211        if (ylogx > 0x1.fffffffd1d571p+6 * POWF_SCALE)
     212  	/* |x^y| > 0x1.ffffffp127.  */
     213  	return __math_oflowf (sign_bias);
     214        if (WANT_ROUNDING && WANT_ERRNO
     215  	  && ylogx > 0x1.fffffffa3aae2p+6 * POWF_SCALE)
     216  	/* |x^y| > 0x1.fffffep127, check if we round away from 0.  */
     217  	if ((!sign_bias
     218  	     && math_narrow_eval (1.0f + math_opt_barrier (0x1p-25f)) != 1.0f)
     219  	    || (sign_bias
     220  		&& math_narrow_eval (-1.0f - math_opt_barrier (0x1p-25f))
     221  		     != -1.0f))
     222  	  return __math_oflowf (sign_bias);
     223        if (ylogx <= -150.0 * POWF_SCALE)
     224  	return __math_uflowf (sign_bias);
     225  #if WANT_ERRNO_UFLOW
     226        if (ylogx < -149.0 * POWF_SCALE)
     227  	return __math_may_uflowf (sign_bias);
     228  #endif
     229      }
     230    return (float) exp2_inline (ylogx, sign_bias);
     231  }
     232  #ifndef __powf
     233  strong_alias (__powf, __ieee754_powf)
     234  libm_alias_finite (__ieee754_powf, __powf)
     235  versioned_symbol (libm, __powf, powf, GLIBC_2_27);
     236  libm_alias_float_other (__pow, pow)
     237  #endif