(root)/
glibc-2.38/
sysdeps/
ieee754/
flt-32/
e_jnf.c
       1  /* e_jnf.c -- float version of e_jn.c.
       2   */
       3  
       4  /*
       5   * ====================================================
       6   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
       7   *
       8   * Developed at SunPro, a Sun Microsystems, Inc. business.
       9   * Permission to use, copy, modify, and distribute this
      10   * software is freely granted, provided that this notice
      11   * is preserved.
      12   * ====================================================
      13   */
      14  
      15  #include <errno.h>
      16  #include <float.h>
      17  #include <math.h>
      18  #include <math-narrow-eval.h>
      19  #include <math_private.h>
      20  #include <fenv_private.h>
      21  #include <math-underflow.h>
      22  #include <libm-alias-finite.h>
      23  
      24  static const float
      25  two   =  2.0000000000e+00, /* 0x40000000 */
      26  one   =  1.0000000000e+00; /* 0x3F800000 */
      27  
      28  static const float zero  =  0.0000000000e+00;
      29  
      30  float
      31  __ieee754_jnf(int n, float x)
      32  {
      33      float ret;
      34      {
      35  	int32_t i,hx,ix, sgn;
      36  	float a, b, temp, di;
      37  	float z, w;
      38  
      39      /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
      40       * Thus, J(-n,x) = J(n,-x)
      41       */
      42  	GET_FLOAT_WORD(hx,x);
      43  	ix = 0x7fffffff&hx;
      44      /* if J(n,NaN) is NaN */
      45  	if(__builtin_expect(ix>0x7f800000, 0)) return x+x;
      46  	if(n<0){
      47  		n = -n;
      48  		x = -x;
      49  		hx ^= 0x80000000;
      50  	}
      51  	if(n==0) return(__ieee754_j0f(x));
      52  	if(n==1) return(__ieee754_j1f(x));
      53  	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
      54  	x = fabsf(x);
      55  	SET_RESTORE_ROUNDF (FE_TONEAREST);
      56  	if(__builtin_expect(ix==0||ix>=0x7f800000, 0))	/* if x is 0 or inf */
      57  	    return sgn == 1 ? -zero : zero;
      58  	else if((float)n<=x) {
      59  		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
      60  	    a = __ieee754_j0f(x);
      61  	    b = __ieee754_j1f(x);
      62  	    for(i=1;i<n;i++){
      63  		temp = b;
      64  		b = b*((double)(i+i)/x) - a; /* avoid underflow */
      65  		a = temp;
      66  	    }
      67  	} else {
      68  	    if(ix<0x30800000) {	/* x < 2**-29 */
      69      /* x is tiny, return the first Taylor expansion of J(n,x)
      70       * J(n,x) = 1/n!*(x/2)^n  - ...
      71       */
      72  		if(n>33)	/* underflow */
      73  		    b = zero;
      74  		else {
      75  		    temp = x*(float)0.5; b = temp;
      76  		    for (a=one,i=2;i<=n;i++) {
      77  			a *= (float)i;		/* a = n! */
      78  			b *= temp;		/* b = (x/2)^n */
      79  		    }
      80  		    b = b/a;
      81  		}
      82  	    } else {
      83  		/* use backward recurrence */
      84  		/*			x      x^2      x^2
      85  		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
      86  		 *			2n  - 2(n+1) - 2(n+2)
      87  		 *
      88  		 *			1      1        1
      89  		 *  (for large x)   =  ----  ------   ------   .....
      90  		 *			2n   2(n+1)   2(n+2)
      91  		 *			-- - ------ - ------ -
      92  		 *			 x     x         x
      93  		 *
      94  		 * Let w = 2n/x and h=2/x, then the above quotient
      95  		 * is equal to the continued fraction:
      96  		 *		    1
      97  		 *	= -----------------------
      98  		 *		       1
      99  		 *	   w - -----------------
     100  		 *			  1
     101  		 *		w+h - ---------
     102  		 *		       w+2h - ...
     103  		 *
     104  		 * To determine how many terms needed, let
     105  		 * Q(0) = w, Q(1) = w(w+h) - 1,
     106  		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
     107  		 * When Q(k) > 1e4	good for single
     108  		 * When Q(k) > 1e9	good for double
     109  		 * When Q(k) > 1e17	good for quadruple
     110  		 */
     111  	    /* determine k */
     112  		float t,v;
     113  		float q0,q1,h,tmp; int32_t k,m;
     114  		w  = (n+n)/(float)x; h = (float)2.0/(float)x;
     115  		q0 = w;  z = w+h; q1 = w*z - (float)1.0; k=1;
     116  		while(q1<(float)1.0e9) {
     117  			k += 1; z += h;
     118  			tmp = z*q1 - q0;
     119  			q0 = q1;
     120  			q1 = tmp;
     121  		}
     122  		m = n+n;
     123  		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
     124  		a = t;
     125  		b = one;
     126  		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
     127  		 *  Hence, if n*(log(2n/x)) > ...
     128  		 *  single 8.8722839355e+01
     129  		 *  double 7.09782712893383973096e+02
     130  		 *  long double 1.1356523406294143949491931077970765006170e+04
     131  		 *  then recurrent value may overflow and the result is
     132  		 *  likely underflow to zero
     133  		 */
     134  		tmp = n;
     135  		v = two/x;
     136  		tmp = tmp*__ieee754_logf(fabsf(v*tmp));
     137  		if(tmp<8.8721679688e+01f) {
     138  		    for(i=n-1,di=(float)(i+i);i>0;i--){
     139  			temp = b;
     140  			b *= di;
     141  			b  = b/x - a;
     142  			a = temp;
     143  			di -= two;
     144  		    }
     145  		} else {
     146  		    for(i=n-1,di=(float)(i+i);i>0;i--){
     147  			temp = b;
     148  			b *= di;
     149  			b  = b/x - a;
     150  			a = temp;
     151  			di -= two;
     152  		    /* scale b to avoid spurious overflow */
     153  			if(b>(float)1e10) {
     154  			    a /= b;
     155  			    t /= b;
     156  			    b  = one;
     157  			}
     158  		    }
     159  		}
     160  		/* j0() and j1() suffer enormous loss of precision at and
     161  		 * near zero; however, we know that their zero points never
     162  		 * coincide, so just choose the one further away from zero.
     163  		 */
     164  		z = __ieee754_j0f (x);
     165  		w = __ieee754_j1f (x);
     166  		if (fabsf (z) >= fabsf (w))
     167  		  b = (t * z / b);
     168  		else
     169  		  b = (t * w / a);
     170  	    }
     171  	}
     172  	if(sgn==1) ret = -b; else ret = b;
     173  	ret = math_narrow_eval (ret);
     174      }
     175      if (ret == 0)
     176        {
     177  	ret = math_narrow_eval (copysignf (FLT_MIN, ret) * FLT_MIN);
     178  	__set_errno (ERANGE);
     179        }
     180      else
     181  	math_check_force_underflow (ret);
     182      return ret;
     183  }
     184  libm_alias_finite (__ieee754_jnf, __jnf)
     185  
     186  float
     187  __ieee754_ynf(int n, float x)
     188  {
     189      float ret;
     190      {
     191  	int32_t i,hx,ix;
     192  	uint32_t ib;
     193  	int32_t sign;
     194  	float a, b, temp;
     195  
     196  	GET_FLOAT_WORD(hx,x);
     197  	ix = 0x7fffffff&hx;
     198      /* if Y(n,NaN) is NaN */
     199  	if(__builtin_expect(ix>0x7f800000, 0)) return x+x;
     200  	sign = 1;
     201  	if(n<0){
     202  		n = -n;
     203  		sign = 1 - ((n&1)<<1);
     204  	}
     205  	if(n==0) return(__ieee754_y0f(x));
     206  	if(__builtin_expect(ix==0, 0))
     207  		return -sign/zero;
     208  	if(__builtin_expect(hx<0, 0)) return zero/(zero*x);
     209  	SET_RESTORE_ROUNDF (FE_TONEAREST);
     210  	if(n==1) {
     211  	    ret = sign*__ieee754_y1f(x);
     212  	    goto out;
     213  	}
     214  	if(__builtin_expect(ix==0x7f800000, 0)) return zero;
     215  
     216  	a = __ieee754_y0f(x);
     217  	b = __ieee754_y1f(x);
     218  	/* quit if b is -inf */
     219  	GET_FLOAT_WORD(ib,b);
     220  	for(i=1;i<n&&ib!=0xff800000;i++){
     221  	    temp = b;
     222  	    b = ((double)(i+i)/x)*b - a;
     223  	    GET_FLOAT_WORD(ib,b);
     224  	    a = temp;
     225  	}
     226  	/* If B is +-Inf, set up errno accordingly.  */
     227  	if (! isfinite (b))
     228  	  __set_errno (ERANGE);
     229  	if(sign>0) ret = b; else ret = -b;
     230      }
     231   out:
     232      if (isinf (ret))
     233  	ret = copysignf (FLT_MAX, ret) * FLT_MAX;
     234      return ret;
     235  }
     236  libm_alias_finite (__ieee754_ynf, __ynf)