(root)/
glibc-2.38/
sysdeps/
ieee754/
flt-32/
e_gammaf_r.c
       1  /* Implementation of gamma function according to ISO C.
       2     Copyright (C) 1997-2023 Free Software Foundation, Inc.
       3     This file is part of the GNU C Library.
       4  
       5     The GNU C Library is free software; you can redistribute it and/or
       6     modify it under the terms of the GNU Lesser General Public
       7     License as published by the Free Software Foundation; either
       8     version 2.1 of the License, or (at your option) any later version.
       9  
      10     The GNU C Library is distributed in the hope that it will be useful,
      11     but WITHOUT ANY WARRANTY; without even the implied warranty of
      12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      13     Lesser General Public License for more details.
      14  
      15     You should have received a copy of the GNU Lesser General Public
      16     License along with the GNU C Library; if not, see
      17     <https://www.gnu.org/licenses/>.  */
      18  
      19  #include <math.h>
      20  #include <math-narrow-eval.h>
      21  #include <math_private.h>
      22  #include <fenv_private.h>
      23  #include <math-underflow.h>
      24  #include <float.h>
      25  #include <libm-alias-finite.h>
      26  
      27  /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
      28     approximation to gamma function.  */
      29  
      30  static const float gamma_coeff[] =
      31    {
      32      0x1.555556p-4f,
      33      -0xb.60b61p-12f,
      34      0x3.403404p-12f,
      35    };
      36  
      37  #define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
      38  
      39  /* Return gamma (X), for positive X less than 42, in the form R *
      40     2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
      41     avoid overflow or underflow in intermediate calculations.  */
      42  
      43  static float
      44  gammaf_positive (float x, int *exp2_adj)
      45  {
      46    int local_signgam;
      47    if (x < 0.5f)
      48      {
      49        *exp2_adj = 0;
      50        return __ieee754_expf (__ieee754_lgammaf_r (x + 1, &local_signgam)) / x;
      51      }
      52    else if (x <= 1.5f)
      53      {
      54        *exp2_adj = 0;
      55        return __ieee754_expf (__ieee754_lgammaf_r (x, &local_signgam));
      56      }
      57    else if (x < 2.5f)
      58      {
      59        *exp2_adj = 0;
      60        float x_adj = x - 1;
      61        return (__ieee754_expf (__ieee754_lgammaf_r (x_adj, &local_signgam))
      62  	      * x_adj);
      63      }
      64    else
      65      {
      66        float eps = 0;
      67        float x_eps = 0;
      68        float x_adj = x;
      69        float prod = 1;
      70        if (x < 4.0f)
      71  	{
      72  	  /* Adjust into the range for applying Stirling's
      73  	     approximation.  */
      74  	  float n = ceilf (4.0f - x);
      75  	  x_adj = math_narrow_eval (x + n);
      76  	  x_eps = (x - (x_adj - n));
      77  	  prod = __gamma_productf (x_adj - n, x_eps, n, &eps);
      78  	}
      79        /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
      80  	 Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
      81  	 starting by computing pow (X_ADJ, X_ADJ) with a power of 2
      82  	 factored out.  */
      83        float exp_adj = -eps;
      84        float x_adj_int = roundf (x_adj);
      85        float x_adj_frac = x_adj - x_adj_int;
      86        int x_adj_log2;
      87        float x_adj_mant = __frexpf (x_adj, &x_adj_log2);
      88        if (x_adj_mant < M_SQRT1_2f)
      89  	{
      90  	  x_adj_log2--;
      91  	  x_adj_mant *= 2.0f;
      92  	}
      93        *exp2_adj = x_adj_log2 * (int) x_adj_int;
      94        float ret = (__ieee754_powf (x_adj_mant, x_adj)
      95  		   * __ieee754_exp2f (x_adj_log2 * x_adj_frac)
      96  		   * __ieee754_expf (-x_adj)
      97  		   * sqrtf (2 * M_PIf / x_adj)
      98  		   / prod);
      99        exp_adj += x_eps * __ieee754_logf (x_adj);
     100        float bsum = gamma_coeff[NCOEFF - 1];
     101        float x_adj2 = x_adj * x_adj;
     102        for (size_t i = 1; i <= NCOEFF - 1; i++)
     103  	bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
     104        exp_adj += bsum / x_adj;
     105        return ret + ret * __expm1f (exp_adj);
     106      }
     107  }
     108  
     109  float
     110  __ieee754_gammaf_r (float x, int *signgamp)
     111  {
     112    int32_t hx;
     113    float ret;
     114  
     115    GET_FLOAT_WORD (hx, x);
     116  
     117    if (__glibc_unlikely ((hx & 0x7fffffff) == 0))
     118      {
     119        /* Return value for x == 0 is Inf with divide by zero exception.  */
     120        *signgamp = 0;
     121        return 1.0 / x;
     122      }
     123    if (__builtin_expect (hx < 0, 0)
     124        && (uint32_t) hx < 0xff800000 && rintf (x) == x)
     125      {
     126        /* Return value for integer x < 0 is NaN with invalid exception.  */
     127        *signgamp = 0;
     128        return (x - x) / (x - x);
     129      }
     130    if (__glibc_unlikely (hx == 0xff800000))
     131      {
     132        /* x == -Inf.  According to ISO this is NaN.  */
     133        *signgamp = 0;
     134        return x - x;
     135      }
     136    if (__glibc_unlikely ((hx & 0x7f800000) == 0x7f800000))
     137      {
     138        /* Positive infinity (return positive infinity) or NaN (return
     139  	 NaN).  */
     140        *signgamp = 0;
     141        return x + x;
     142      }
     143  
     144    if (x >= 36.0f)
     145      {
     146        /* Overflow.  */
     147        *signgamp = 0;
     148        ret = math_narrow_eval (FLT_MAX * FLT_MAX);
     149        return ret;
     150      }
     151    else
     152      {
     153        SET_RESTORE_ROUNDF (FE_TONEAREST);
     154        if (x > 0.0f)
     155  	{
     156  	  *signgamp = 0;
     157  	  int exp2_adj;
     158  	  float tret = gammaf_positive (x, &exp2_adj);
     159  	  ret = __scalbnf (tret, exp2_adj);
     160  	}
     161        else if (x >= -FLT_EPSILON / 4.0f)
     162  	{
     163  	  *signgamp = 0;
     164  	  ret = 1.0f / x;
     165  	}
     166        else
     167  	{
     168  	  float tx = truncf (x);
     169  	  *signgamp = (tx == 2.0f * truncf (tx / 2.0f)) ? -1 : 1;
     170  	  if (x <= -42.0f)
     171  	    /* Underflow.  */
     172  	    ret = FLT_MIN * FLT_MIN;
     173  	  else
     174  	    {
     175  	      float frac = tx - x;
     176  	      if (frac > 0.5f)
     177  		frac = 1.0f - frac;
     178  	      float sinpix = (frac <= 0.25f
     179  			      ? __sinf (M_PIf * frac)
     180  			      : __cosf (M_PIf * (0.5f - frac)));
     181  	      int exp2_adj;
     182  	      float tret = M_PIf / (-x * sinpix
     183  				    * gammaf_positive (-x, &exp2_adj));
     184  	      ret = __scalbnf (tret, -exp2_adj);
     185  	      math_check_force_underflow_nonneg (ret);
     186  	    }
     187  	}
     188        ret = math_narrow_eval (ret);
     189      }
     190    if (isinf (ret) && x != 0)
     191      {
     192        if (*signgamp < 0)
     193  	{
     194  	  ret = math_narrow_eval (-copysignf (FLT_MAX, ret) * FLT_MAX);
     195  	  ret = -ret;
     196  	}
     197        else
     198  	ret = math_narrow_eval (copysignf (FLT_MAX, ret) * FLT_MAX);
     199        return ret;
     200      }
     201    else if (ret == 0)
     202      {
     203        if (*signgamp < 0)
     204  	{
     205  	  ret = math_narrow_eval (-copysignf (FLT_MIN, ret) * FLT_MIN);
     206  	  ret = -ret;
     207  	}
     208        else
     209  	ret = math_narrow_eval (copysignf (FLT_MIN, ret) * FLT_MIN);
     210        return ret;
     211      }
     212    else
     213      return ret;
     214  }
     215  libm_alias_finite (__ieee754_gammaf_r, __gammaf_r)