(root)/
glibc-2.38/
sysdeps/
ieee754/
dbl-64/
s_fma.c
       1  /* Compute x * y + z as ternary operation.
       2     Copyright (C) 2010-2023 Free Software Foundation, Inc.
       3     This file is part of the GNU C Library.
       4  
       5     The GNU C Library is free software; you can redistribute it and/or
       6     modify it under the terms of the GNU Lesser General Public
       7     License as published by the Free Software Foundation; either
       8     version 2.1 of the License, or (at your option) any later version.
       9  
      10     The GNU C Library is distributed in the hope that it will be useful,
      11     but WITHOUT ANY WARRANTY; without even the implied warranty of
      12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      13     Lesser General Public License for more details.
      14  
      15     You should have received a copy of the GNU Lesser General Public
      16     License along with the GNU C Library; if not, see
      17     <https://www.gnu.org/licenses/>.  */
      18  
      19  #define NO_MATH_REDIRECT
      20  #include <float.h>
      21  #define dfmal __hide_dfmal
      22  #define f32xfmaf64 __hide_f32xfmaf64
      23  #include <math.h>
      24  #undef dfmal
      25  #undef f32xfmaf64
      26  #include <fenv.h>
      27  #include <ieee754.h>
      28  #include <math-barriers.h>
      29  #include <fenv_private.h>
      30  #include <libm-alias-double.h>
      31  #include <math-narrow-alias.h>
      32  #include <tininess.h>
      33  #include <math-use-builtins.h>
      34  
      35  /* This implementation uses rounding to odd to avoid problems with
      36     double rounding.  See a paper by Boldo and Melquiond:
      37     http://www.lri.fr/~melquion/doc/08-tc.pdf  */
      38  
      39  double
      40  __fma (double x, double y, double z)
      41  {
      42  #if USE_FMA_BUILTIN
      43    return __builtin_fma (x, y, z);
      44  #else
      45    /* Use generic implementation.  */
      46    union ieee754_double u, v, w;
      47    int adjust = 0;
      48    u.d = x;
      49    v.d = y;
      50    w.d = z;
      51    if (__builtin_expect (u.ieee.exponent + v.ieee.exponent
      52  			>= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG, 0)
      53        || __builtin_expect (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
      54        || __builtin_expect (v.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
      55        || __builtin_expect (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
      56        || __builtin_expect (u.ieee.exponent + v.ieee.exponent
      57  			   <= IEEE754_DOUBLE_BIAS + DBL_MANT_DIG, 0))
      58      {
      59        /* If z is Inf, but x and y are finite, the result should be
      60  	 z rather than NaN.  */
      61        if (w.ieee.exponent == 0x7ff
      62  	  && u.ieee.exponent != 0x7ff
      63  	  && v.ieee.exponent != 0x7ff)
      64  	return (z + x) + y;
      65        /* If z is zero and x are y are nonzero, compute the result
      66  	 as x * y to avoid the wrong sign of a zero result if x * y
      67  	 underflows to 0.  */
      68        if (z == 0 && x != 0 && y != 0)
      69  	return x * y;
      70        /* If x or y or z is Inf/NaN, or if x * y is zero, compute as
      71  	 x * y + z.  */
      72        if (u.ieee.exponent == 0x7ff
      73  	  || v.ieee.exponent == 0x7ff
      74  	  || w.ieee.exponent == 0x7ff
      75  	  || x == 0
      76  	  || y == 0)
      77  	return x * y + z;
      78        /* If fma will certainly overflow, compute as x * y.  */
      79        if (u.ieee.exponent + v.ieee.exponent > 0x7ff + IEEE754_DOUBLE_BIAS)
      80  	return x * y;
      81        /* If x * y is less than 1/4 of DBL_TRUE_MIN, neither the
      82  	 result nor whether there is underflow depends on its exact
      83  	 value, only on its sign.  */
      84        if (u.ieee.exponent + v.ieee.exponent
      85  	  < IEEE754_DOUBLE_BIAS - DBL_MANT_DIG - 2)
      86  	{
      87  	  int neg = u.ieee.negative ^ v.ieee.negative;
      88  	  double tiny = neg ? -0x1p-1074 : 0x1p-1074;
      89  	  if (w.ieee.exponent >= 3)
      90  	    return tiny + z;
      91  	  /* Scaling up, adding TINY and scaling down produces the
      92  	     correct result, because in round-to-nearest mode adding
      93  	     TINY has no effect and in other modes double rounding is
      94  	     harmless.  But it may not produce required underflow
      95  	     exceptions.  */
      96  	  v.d = z * 0x1p54 + tiny;
      97  	  if (TININESS_AFTER_ROUNDING
      98  	      ? v.ieee.exponent < 55
      99  	      : (w.ieee.exponent == 0
     100  		 || (w.ieee.exponent == 1
     101  		     && w.ieee.negative != neg
     102  		     && w.ieee.mantissa1 == 0
     103  		     && w.ieee.mantissa0 == 0)))
     104  	    {
     105  	      double force_underflow = x * y;
     106  	      math_force_eval (force_underflow);
     107  	    }
     108  	  return v.d * 0x1p-54;
     109  	}
     110        if (u.ieee.exponent + v.ieee.exponent
     111  	  >= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG)
     112  	{
     113  	  /* Compute 1p-53 times smaller result and multiply
     114  	     at the end.  */
     115  	  if (u.ieee.exponent > v.ieee.exponent)
     116  	    u.ieee.exponent -= DBL_MANT_DIG;
     117  	  else
     118  	    v.ieee.exponent -= DBL_MANT_DIG;
     119  	  /* If x + y exponent is very large and z exponent is very small,
     120  	     it doesn't matter if we don't adjust it.  */
     121  	  if (w.ieee.exponent > DBL_MANT_DIG)
     122  	    w.ieee.exponent -= DBL_MANT_DIG;
     123  	  adjust = 1;
     124  	}
     125        else if (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
     126  	{
     127  	  /* Similarly.
     128  	     If z exponent is very large and x and y exponents are
     129  	     very small, adjust them up to avoid spurious underflows,
     130  	     rather than down.  */
     131  	  if (u.ieee.exponent + v.ieee.exponent
     132  	      <= IEEE754_DOUBLE_BIAS + 2 * DBL_MANT_DIG)
     133  	    {
     134  	      if (u.ieee.exponent > v.ieee.exponent)
     135  		u.ieee.exponent += 2 * DBL_MANT_DIG + 2;
     136  	      else
     137  		v.ieee.exponent += 2 * DBL_MANT_DIG + 2;
     138  	    }
     139  	  else if (u.ieee.exponent > v.ieee.exponent)
     140  	    {
     141  	      if (u.ieee.exponent > DBL_MANT_DIG)
     142  		u.ieee.exponent -= DBL_MANT_DIG;
     143  	    }
     144  	  else if (v.ieee.exponent > DBL_MANT_DIG)
     145  	    v.ieee.exponent -= DBL_MANT_DIG;
     146  	  w.ieee.exponent -= DBL_MANT_DIG;
     147  	  adjust = 1;
     148  	}
     149        else if (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
     150  	{
     151  	  u.ieee.exponent -= DBL_MANT_DIG;
     152  	  if (v.ieee.exponent)
     153  	    v.ieee.exponent += DBL_MANT_DIG;
     154  	  else
     155  	    v.d *= 0x1p53;
     156  	}
     157        else if (v.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
     158  	{
     159  	  v.ieee.exponent -= DBL_MANT_DIG;
     160  	  if (u.ieee.exponent)
     161  	    u.ieee.exponent += DBL_MANT_DIG;
     162  	  else
     163  	    u.d *= 0x1p53;
     164  	}
     165        else /* if (u.ieee.exponent + v.ieee.exponent
     166  		  <= IEEE754_DOUBLE_BIAS + DBL_MANT_DIG) */
     167  	{
     168  	  if (u.ieee.exponent > v.ieee.exponent)
     169  	    u.ieee.exponent += 2 * DBL_MANT_DIG + 2;
     170  	  else
     171  	    v.ieee.exponent += 2 * DBL_MANT_DIG + 2;
     172  	  if (w.ieee.exponent <= 4 * DBL_MANT_DIG + 6)
     173  	    {
     174  	      if (w.ieee.exponent)
     175  		w.ieee.exponent += 2 * DBL_MANT_DIG + 2;
     176  	      else
     177  		w.d *= 0x1p108;
     178  	      adjust = -1;
     179  	    }
     180  	  /* Otherwise x * y should just affect inexact
     181  	     and nothing else.  */
     182  	}
     183        x = u.d;
     184        y = v.d;
     185        z = w.d;
     186      }
     187  
     188    /* Ensure correct sign of exact 0 + 0.  */
     189    if (__glibc_unlikely ((x == 0 || y == 0) && z == 0))
     190      {
     191        x = math_opt_barrier (x);
     192        return x * y + z;
     193      }
     194  
     195    fenv_t env;
     196    libc_feholdexcept_setround (&env, FE_TONEAREST);
     197  
     198    /* Multiplication m1 + m2 = x * y using Dekker's algorithm.  */
     199  #define C ((1 << (DBL_MANT_DIG + 1) / 2) + 1)
     200    double x1 = x * C;
     201    double y1 = y * C;
     202    double m1 = x * y;
     203    x1 = (x - x1) + x1;
     204    y1 = (y - y1) + y1;
     205    double x2 = x - x1;
     206    double y2 = y - y1;
     207    double m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2;
     208  
     209    /* Addition a1 + a2 = z + m1 using Knuth's algorithm.  */
     210    double a1 = z + m1;
     211    double t1 = a1 - z;
     212    double t2 = a1 - t1;
     213    t1 = m1 - t1;
     214    t2 = z - t2;
     215    double a2 = t1 + t2;
     216    /* Ensure the arithmetic is not scheduled after feclearexcept call.  */
     217    math_force_eval (m2);
     218    math_force_eval (a2);
     219    feclearexcept (FE_INEXACT);
     220  
     221    /* If the result is an exact zero, ensure it has the correct sign.  */
     222    if (a1 == 0 && m2 == 0)
     223      {
     224        libc_feupdateenv (&env);
     225        /* Ensure that round-to-nearest value of z + m1 is not reused.  */
     226        z = math_opt_barrier (z);
     227        return z + m1;
     228      }
     229  
     230    libc_fesetround (FE_TOWARDZERO);
     231  
     232    /* Perform m2 + a2 addition with round to odd.  */
     233    u.d = a2 + m2;
     234  
     235    if (__glibc_unlikely (adjust < 0))
     236      {
     237        if ((u.ieee.mantissa1 & 1) == 0)
     238  	u.ieee.mantissa1 |= libc_fetestexcept (FE_INEXACT) != 0;
     239        v.d = a1 + u.d;
     240        /* Ensure the addition is not scheduled after fetestexcept call.  */
     241        math_force_eval (v.d);
     242      }
     243  
     244    /* Reset rounding mode and test for inexact simultaneously.  */
     245    int j = libc_feupdateenv_test (&env, FE_INEXACT) != 0;
     246  
     247    if (__glibc_likely (adjust == 0))
     248      {
     249        if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7ff)
     250  	u.ieee.mantissa1 |= j;
     251        /* Result is a1 + u.d.  */
     252        return a1 + u.d;
     253      }
     254    else if (__glibc_likely (adjust > 0))
     255      {
     256        if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7ff)
     257  	u.ieee.mantissa1 |= j;
     258        /* Result is a1 + u.d, scaled up.  */
     259        return (a1 + u.d) * 0x1p53;
     260      }
     261    else
     262      {
     263        /* If a1 + u.d is exact, the only rounding happens during
     264  	 scaling down.  */
     265        if (j == 0)
     266  	return v.d * 0x1p-108;
     267        /* If result rounded to zero is not subnormal, no double
     268  	 rounding will occur.  */
     269        if (v.ieee.exponent > 108)
     270  	return (a1 + u.d) * 0x1p-108;
     271        /* If v.d * 0x1p-108 with round to zero is a subnormal above
     272  	 or equal to DBL_MIN / 2, then v.d * 0x1p-108 shifts mantissa
     273  	 down just by 1 bit, which means v.ieee.mantissa1 |= j would
     274  	 change the round bit, not sticky or guard bit.
     275  	 v.d * 0x1p-108 never normalizes by shifting up,
     276  	 so round bit plus sticky bit should be already enough
     277  	 for proper rounding.  */
     278        if (v.ieee.exponent == 108)
     279  	{
     280  	  /* If the exponent would be in the normal range when
     281  	     rounding to normal precision with unbounded exponent
     282  	     range, the exact result is known and spurious underflows
     283  	     must be avoided on systems detecting tininess after
     284  	     rounding.  */
     285  	  if (TININESS_AFTER_ROUNDING)
     286  	    {
     287  	      w.d = a1 + u.d;
     288  	      if (w.ieee.exponent == 109)
     289  		return w.d * 0x1p-108;
     290  	    }
     291  	  /* v.ieee.mantissa1 & 2 is LSB bit of the result before rounding,
     292  	     v.ieee.mantissa1 & 1 is the round bit and j is our sticky
     293  	     bit.  */
     294  	  w.d = 0.0;
     295  	  w.ieee.mantissa1 = ((v.ieee.mantissa1 & 3) << 1) | j;
     296  	  w.ieee.negative = v.ieee.negative;
     297  	  v.ieee.mantissa1 &= ~3U;
     298  	  v.d *= 0x1p-108;
     299  	  w.d *= 0x1p-2;
     300  	  return v.d + w.d;
     301  	}
     302        v.ieee.mantissa1 |= j;
     303        return v.d * 0x1p-108;
     304      }
     305  #endif /* ! USE_FMA_BUILTIN  */
     306  }
     307  #ifndef __fma
     308  libm_alias_double (__fma, fma)
     309  libm_alias_double_narrow (__fma, fma)
     310  #endif