(root)/
glibc-2.38/
sysdeps/
ieee754/
dbl-64/
s_expm1.c
       1  /* @(#)s_expm1.c 5.1 93/09/24 */
       2  /*
       3   * ====================================================
       4   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
       5   *
       6   * Developed at SunPro, a Sun Microsystems, Inc. business.
       7   * Permission to use, copy, modify, and distribute this
       8   * software is freely granted, provided that this notice
       9   * is preserved.
      10   * ====================================================
      11   */
      12  /* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
      13     for performance improvement on pipelined processors.
      14   */
      15  
      16  /* expm1(x)
      17   * Returns exp(x)-1, the exponential of x minus 1.
      18   *
      19   * Method
      20   *   1. Argument reduction:
      21   *	Given x, find r and integer k such that
      22   *
      23   *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
      24   *
      25   *      Here a correction term c will be computed to compensate
      26   *	the error in r when rounded to a floating-point number.
      27   *
      28   *   2. Approximating expm1(r) by a special rational function on
      29   *	the interval [0,0.34658]:
      30   *	Since
      31   *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
      32   *	we define R1(r*r) by
      33   *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
      34   *	That is,
      35   *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
      36   *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
      37   *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
      38   *      We use a special Reme algorithm on [0,0.347] to generate
      39   *	a polynomial of degree 5 in r*r to approximate R1. The
      40   *	maximum error of this polynomial approximation is bounded
      41   *	by 2**-61. In other words,
      42   *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
      43   *	where	Q1  =  -1.6666666666666567384E-2,
      44   *		Q2  =   3.9682539681370365873E-4,
      45   *		Q3  =  -9.9206344733435987357E-6,
      46   *		Q4  =   2.5051361420808517002E-7,
      47   *		Q5  =  -6.2843505682382617102E-9;
      48   *	(where z=r*r, and the values of Q1 to Q5 are listed below)
      49   *	with error bounded by
      50   *	    |                  5           |     -61
      51   *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
      52   *	    |                              |
      53   *
      54   *	expm1(r) = exp(r)-1 is then computed by the following
      55   *	specific way which minimize the accumulation rounding error:
      56   *			       2     3
      57   *			      r     r    [ 3 - (R1 + R1*r/2)  ]
      58   *	      expm1(r) = r + --- + --- * [--------------------]
      59   *			      2     2    [ 6 - r*(3 - R1*r/2) ]
      60   *
      61   *	To compensate the error in the argument reduction, we use
      62   *		expm1(r+c) = expm1(r) + c + expm1(r)*c
      63   *			   ~ expm1(r) + c + r*c
      64   *	Thus c+r*c will be added in as the correction terms for
      65   *	expm1(r+c). Now rearrange the term to avoid optimization
      66   *	screw up:
      67   *			(      2                                    2 )
      68   *			({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
      69   *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
      70   *			({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
      71   *                      (                                             )
      72   *
      73   *		   = r - E
      74   *   3. Scale back to obtain expm1(x):
      75   *	From step 1, we have
      76   *	   expm1(x) = either 2^k*[expm1(r)+1] - 1
      77   *		    = or     2^k*[expm1(r) + (1-2^-k)]
      78   *   4. Implementation notes:
      79   *	(A). To save one multiplication, we scale the coefficient Qi
      80   *	     to Qi*2^i, and replace z by (x^2)/2.
      81   *	(B). To achieve maximum accuracy, we compute expm1(x) by
      82   *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
      83   *	  (ii)  if k=0, return r-E
      84   *	  (iii) if k=-1, return 0.5*(r-E)-0.5
      85   *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
      86   *		       else	     return  1.0+2.0*(r-E);
      87   *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
      88   *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
      89   *	  (vii) return 2^k(1-((E+2^-k)-r))
      90   *
      91   * Special cases:
      92   *	expm1(INF) is INF, expm1(NaN) is NaN;
      93   *	expm1(-INF) is -1, and
      94   *	for finite argument, only expm1(0)=0 is exact.
      95   *
      96   * Accuracy:
      97   *	according to an error analysis, the error is always less than
      98   *	1 ulp (unit in the last place).
      99   *
     100   * Misc. info.
     101   *	For IEEE double
     102   *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow
     103   *
     104   * Constants:
     105   * The hexadecimal values are the intended ones for the following
     106   * constants. The decimal values may be used, provided that the
     107   * compiler will convert from decimal to binary accurately enough
     108   * to produce the hexadecimal values shown.
     109   */
     110  
     111  #include <errno.h>
     112  #include <float.h>
     113  #include <math.h>
     114  #include <math-barriers.h>
     115  #include <math_private.h>
     116  #include <math-underflow.h>
     117  #include <libm-alias-double.h>
     118  #define one Q[0]
     119  static const double
     120    huge = 1.0e+300,
     121    tiny = 1.0e-300,
     122    o_threshold = 7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
     123    ln2_hi = 6.93147180369123816490e-01,       /* 0x3fe62e42, 0xfee00000 */
     124    ln2_lo = 1.90821492927058770002e-10,       /* 0x3dea39ef, 0x35793c76 */
     125    invln2 = 1.44269504088896338700e+00,       /* 0x3ff71547, 0x652b82fe */
     126  /* scaled coefficients related to expm1 */
     127    Q[] = { 1.0, -3.33333333333331316428e-02, /* BFA11111 111110F4 */
     128  	  1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
     129  	  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
     130  	  4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
     131  	  -2.01099218183624371326e-07 }; /* BE8AFDB7 6E09C32D */
     132  
     133  double
     134  __expm1 (double x)
     135  {
     136    double y, hi, lo, c, t, e, hxs, hfx, r1, h2, h4, R1, R2, R3;
     137    int32_t k, xsb;
     138    uint32_t hx;
     139  
     140    GET_HIGH_WORD (hx, x);
     141    xsb = hx & 0x80000000;                /* sign bit of x */
     142    if (xsb == 0)
     143      y = x;
     144    else
     145      y = -x;                             /* y = |x| */
     146    hx &= 0x7fffffff;                     /* high word of |x| */
     147  
     148    /* filter out huge and non-finite argument */
     149    if (hx >= 0x4043687A)                         /* if |x|>=56*ln2 */
     150      {
     151        if (hx >= 0x40862E42)                     /* if |x|>=709.78... */
     152  	{
     153  	  if (hx >= 0x7ff00000)
     154  	    {
     155  	      uint32_t low;
     156  	      GET_LOW_WORD (low, x);
     157  	      if (((hx & 0xfffff) | low) != 0)
     158  		return x + x;            /* NaN */
     159  	      else
     160  		return (xsb == 0) ? x : -1.0;    /* exp(+-inf)={inf,-1} */
     161  	    }
     162  	  if (x > o_threshold)
     163  	    {
     164  	      __set_errno (ERANGE);
     165  	      return huge * huge;   /* overflow */
     166  	    }
     167  	}
     168        if (xsb != 0)      /* x < -56*ln2, return -1.0 with inexact */
     169  	{
     170  	  math_force_eval (x + tiny);           /* raise inexact */
     171  	  return tiny - one;            /* return -1 */
     172  	}
     173      }
     174  
     175    /* argument reduction */
     176    if (hx > 0x3fd62e42)                  /* if  |x| > 0.5 ln2 */
     177      {
     178        if (hx < 0x3FF0A2B2)              /* and |x| < 1.5 ln2 */
     179  	{
     180  	  if (xsb == 0)
     181  	    {
     182  	      hi = x - ln2_hi; lo = ln2_lo;  k = 1;
     183  	    }
     184  	  else
     185  	    {
     186  	      hi = x + ln2_hi; lo = -ln2_lo;  k = -1;
     187  	    }
     188  	}
     189        else
     190  	{
     191  	  k = invln2 * x + ((xsb == 0) ? 0.5 : -0.5);
     192  	  t = k;
     193  	  hi = x - t * ln2_hi;          /* t*ln2_hi is exact here */
     194  	  lo = t * ln2_lo;
     195  	}
     196        x = hi - lo;
     197        c = (hi - x) - lo;
     198      }
     199    else if (hx < 0x3c900000)             /* when |x|<2**-54, return x */
     200      {
     201        math_check_force_underflow (x);
     202        t = huge + x;     /* return x with inexact flags when x!=0 */
     203        return x - (t - (huge + x));
     204      }
     205    else
     206      k = 0;
     207  
     208    /* x is now in primary range */
     209    hfx = 0.5 * x;
     210    hxs = x * hfx;
     211    R1 = one + hxs * Q[1]; h2 = hxs * hxs;
     212    R2 = Q[2] + hxs * Q[3]; h4 = h2 * h2;
     213    R3 = Q[4] + hxs * Q[5];
     214    r1 = R1 + h2 * R2 + h4 * R3;
     215    t = 3.0 - r1 * hfx;
     216    e = hxs * ((r1 - t) / (6.0 - x * t));
     217    if (k == 0)
     218      return x - (x * e - hxs);                   /* c is 0 */
     219    else
     220      {
     221        e = (x * (e - c) - c);
     222        e -= hxs;
     223        if (k == -1)
     224  	return 0.5 * (x - e) - 0.5;
     225        if (k == 1)
     226  	{
     227  	  if (x < -0.25)
     228  	    return -2.0 * (e - (x + 0.5));
     229  	  else
     230  	    return one + 2.0 * (x - e);
     231  	}
     232        if (k <= -2 || k > 56)         /* suffice to return exp(x)-1 */
     233  	{
     234  	  uint32_t high;
     235  	  y = one - (e - x);
     236  	  GET_HIGH_WORD (high, y);
     237  	  SET_HIGH_WORD (y, high + (k << 20));  /* add k to y's exponent */
     238  	  return y - one;
     239  	}
     240        t = one;
     241        if (k < 20)
     242  	{
     243  	  uint32_t high;
     244  	  SET_HIGH_WORD (t, 0x3ff00000 - (0x200000 >> k));    /* t=1-2^-k */
     245  	  y = t - (e - x);
     246  	  GET_HIGH_WORD (high, y);
     247  	  SET_HIGH_WORD (y, high + (k << 20));  /* add k to y's exponent */
     248  	}
     249        else
     250  	{
     251  	  uint32_t high;
     252  	  SET_HIGH_WORD (t, ((0x3ff - k) << 20));       /* 2^-k */
     253  	  y = x - (e + t);
     254  	  y += one;
     255  	  GET_HIGH_WORD (high, y);
     256  	  SET_HIGH_WORD (y, high + (k << 20));  /* add k to y's exponent */
     257  	}
     258      }
     259    return y;
     260  }
     261  libm_alias_double (__expm1, expm1)