(root)/
glibc-2.38/
sysdeps/
ieee754/
dbl-64/
s_erf.c
       1  /* @(#)s_erf.c 5.1 93/09/24 */
       2  /*
       3   * ====================================================
       4   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
       5   *
       6   * Developed at SunPro, a Sun Microsystems, Inc. business.
       7   * Permission to use, copy, modify, and distribute this
       8   * software is freely granted, provided that this notice
       9   * is preserved.
      10   * ====================================================
      11   */
      12  /* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
      13     for performance improvement on pipelined processors.
      14  */
      15  
      16  #if defined(LIBM_SCCS) && !defined(lint)
      17  static char rcsid[] = "$NetBSD: s_erf.c,v 1.8 1995/05/10 20:47:05 jtc Exp $";
      18  #endif
      19  
      20  /* double erf(double x)
      21   * double erfc(double x)
      22   *			     x
      23   *		      2      |\
      24   *     erf(x)  =  ---------  | exp(-t*t)dt
      25   *	 	   sqrt(pi) \|
      26   *			     0
      27   *
      28   *     erfc(x) =  1-erf(x)
      29   *  Note that
      30   *		erf(-x) = -erf(x)
      31   *		erfc(-x) = 2 - erfc(x)
      32   *
      33   * Method:
      34   *	1. For |x| in [0, 0.84375]
      35   *	    erf(x)  = x + x*R(x^2)
      36   *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
      37   *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
      38   *	   where R = P/Q where P is an odd poly of degree 8 and
      39   *	   Q is an odd poly of degree 10.
      40   *						 -57.90
      41   *			| R - (erf(x)-x)/x | <= 2
      42   *
      43   *
      44   *	   Remark. The formula is derived by noting
      45   *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
      46   *	   and that
      47   *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
      48   *	   is close to one. The interval is chosen because the fix
      49   *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
      50   *	   near 0.6174), and by some experiment, 0.84375 is chosen to
      51   * 	   guarantee the error is less than one ulp for erf.
      52   *
      53   *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
      54   *         c = 0.84506291151 rounded to single (24 bits)
      55   *         	erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
      56   *         	erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
      57   *			  1+(c+P1(s)/Q1(s))    if x < 0
      58   *         	|P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
      59   *	   Remark: here we use the taylor series expansion at x=1.
      60   *		erf(1+s) = erf(1) + s*Poly(s)
      61   *			 = 0.845.. + P1(s)/Q1(s)
      62   *	   That is, we use rational approximation to approximate
      63   *			erf(1+s) - (c = (single)0.84506291151)
      64   *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
      65   *	   where
      66   *		P1(s) = degree 6 poly in s
      67   *		Q1(s) = degree 6 poly in s
      68   *
      69   *      3. For x in [1.25,1/0.35(~2.857143)],
      70   *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
      71   *         	erf(x)  = 1 - erfc(x)
      72   *	   where
      73   *		R1(z) = degree 7 poly in z, (z=1/x^2)
      74   *		S1(z) = degree 8 poly in z
      75   *
      76   *      4. For x in [1/0.35,28]
      77   *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
      78   *			= 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
      79   *			= 2.0 - tiny		(if x <= -6)
      80   *         	erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
      81   *         	erf(x)  = sign(x)*(1.0 - tiny)
      82   *	   where
      83   *		R2(z) = degree 6 poly in z, (z=1/x^2)
      84   *		S2(z) = degree 7 poly in z
      85   *
      86   *      Note1:
      87   *	   To compute exp(-x*x-0.5625+R/S), let s be a single
      88   *	   precision number and s := x; then
      89   *		-x*x = -s*s + (s-x)*(s+x)
      90   *	        exp(-x*x-0.5626+R/S) =
      91   *			exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
      92   *      Note2:
      93   *	   Here 4 and 5 make use of the asymptotic series
      94   *			  exp(-x*x)
      95   *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
      96   *			  x*sqrt(pi)
      97   *	   We use rational approximation to approximate
      98   *      	g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
      99   *	   Here is the error bound for R1/S1 and R2/S2
     100   *      	|R1/S1 - f(x)|  < 2**(-62.57)
     101   *      	|R2/S2 - f(x)|  < 2**(-61.52)
     102   *
     103   *      5. For inf > x >= 28
     104   *         	erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
     105   *         	erfc(x) = tiny*tiny (raise underflow) if x > 0
     106   *			= 2 - tiny if x<0
     107   *
     108   *      7. Special case:
     109   *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
     110   *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
     111   *	   	erfc/erf(NaN) is NaN
     112   */
     113  
     114  
     115  #include <errno.h>
     116  #include <float.h>
     117  #include <math.h>
     118  #include <math-narrow-eval.h>
     119  #include <math_private.h>
     120  #include <math-underflow.h>
     121  #include <libm-alias-double.h>
     122  #include <fix-int-fp-convert-zero.h>
     123  
     124  static const double
     125    tiny = 1e-300,
     126    half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
     127    one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
     128    two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
     129  /* c = (float)0.84506291151 */
     130    erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
     131  /*
     132   * Coefficients for approximation to  erf on [0,0.84375]
     133   */
     134    efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
     135    pp[] = { 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
     136  	   -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
     137  	   -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
     138  	   -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
     139  	   -2.37630166566501626084e-05 }, /* 0xBEF8EAD6, 0x120016AC */
     140    qq[] = { 0.0, 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
     141  	   6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
     142  	   5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
     143  	   1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
     144  	   -3.96022827877536812320e-06 }, /* 0xBED09C43, 0x42A26120 */
     145  /*
     146   * Coefficients for approximation to  erf  in [0.84375,1.25]
     147   */
     148    pa[] = { -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
     149  	   4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
     150  	   -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
     151  	   3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
     152  	   -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
     153  	   3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
     154  	   -2.16637559486879084300e-03 }, /* 0xBF61BF38, 0x0A96073F */
     155    qa[] = { 0.0, 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
     156  	   5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
     157  	   7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
     158  	   1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
     159  	   1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
     160  	   1.19844998467991074170e-02 }, /* 0x3F888B54, 0x5735151D */
     161  /*
     162   * Coefficients for approximation to  erfc in [1.25,1/0.35]
     163   */
     164    ra[] = { -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
     165  	   -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
     166  	   -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
     167  	   -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
     168  	   -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
     169  	   -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
     170  	   -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
     171  	   -9.81432934416914548592e+00 }, /* 0xC023A0EF, 0xC69AC25C */
     172    sa[] = { 0.0, 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
     173  	   1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
     174  	   4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
     175  	   6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
     176  	   4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
     177  	   1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
     178  	   6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
     179  	   -6.04244152148580987438e-02 }, /* 0xBFAEEFF2, 0xEE749A62 */
     180  /*
     181   * Coefficients for approximation to  erfc in [1/.35,28]
     182   */
     183    rb[] = { -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
     184  	   -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
     185  	   -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
     186  	   -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
     187  	   -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
     188  	   -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
     189  	   -4.83519191608651397019e+02 }, /* 0xC07E384E, 0x9BDC383F */
     190    sb[] = { 0.0, 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
     191  	   3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
     192  	   1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
     193  	   3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
     194  	   2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
     195  	   4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
     196  	   -2.24409524465858183362e+01 }; /* 0xC03670E2, 0x42712D62 */
     197  
     198  double
     199  __erf (double x)
     200  {
     201    int32_t hx, ix, i;
     202    double R, S, P, Q, s, y, z, r;
     203    GET_HIGH_WORD (hx, x);
     204    ix = hx & 0x7fffffff;
     205    if (ix >= 0x7ff00000)                 /* erf(nan)=nan */
     206      {
     207        i = ((uint32_t) hx >> 31) << 1;
     208        return (double) (1 - i) + one / x; /* erf(+-inf)=+-1 */
     209      }
     210  
     211    if (ix < 0x3feb0000)                  /* |x|<0.84375 */
     212      {
     213        double r1, r2, s1, s2, s3, z2, z4;
     214        if (ix < 0x3e300000)              /* |x|<2**-28 */
     215  	{
     216  	  if (ix < 0x00800000)
     217  	    {
     218  	      /* Avoid spurious underflow.  */
     219  	      double ret = 0.0625 * (16.0 * x + (16.0 * efx) * x);
     220  	      math_check_force_underflow (ret);
     221  	      return ret;
     222  	    }
     223  	  return x + efx * x;
     224  	}
     225        z = x * x;
     226        r1 = pp[0] + z * pp[1]; z2 = z * z;
     227        r2 = pp[2] + z * pp[3]; z4 = z2 * z2;
     228        s1 = one + z * qq[1];
     229        s2 = qq[2] + z * qq[3];
     230        s3 = qq[4] + z * qq[5];
     231        r = r1 + z2 * r2 + z4 * pp[4];
     232        s = s1 + z2 * s2 + z4 * s3;
     233        y = r / s;
     234        return x + x * y;
     235      }
     236    if (ix < 0x3ff40000)                  /* 0.84375 <= |x| < 1.25 */
     237      {
     238        double s2, s4, s6, P1, P2, P3, P4, Q1, Q2, Q3, Q4;
     239        s = fabs (x) - one;
     240        P1 = pa[0] + s * pa[1]; s2 = s * s;
     241        Q1 = one + s * qa[1];   s4 = s2 * s2;
     242        P2 = pa[2] + s * pa[3]; s6 = s4 * s2;
     243        Q2 = qa[2] + s * qa[3];
     244        P3 = pa[4] + s * pa[5];
     245        Q3 = qa[4] + s * qa[5];
     246        P4 = pa[6];
     247        Q4 = qa[6];
     248        P = P1 + s2 * P2 + s4 * P3 + s6 * P4;
     249        Q = Q1 + s2 * Q2 + s4 * Q3 + s6 * Q4;
     250        if (hx >= 0)
     251  	return erx + P / Q;
     252        else
     253  	return -erx - P / Q;
     254      }
     255    if (ix >= 0x40180000)                 /* inf>|x|>=6 */
     256      {
     257        if (hx >= 0)
     258  	return one - tiny;
     259        else
     260  	return tiny - one;
     261      }
     262    x = fabs (x);
     263    s = one / (x * x);
     264    if (ix < 0x4006DB6E)          /* |x| < 1/0.35 */
     265      {
     266        double R1, R2, R3, R4, S1, S2, S3, S4, s2, s4, s6, s8;
     267        R1 = ra[0] + s * ra[1]; s2 = s * s;
     268        S1 = one + s * sa[1];  s4 = s2 * s2;
     269        R2 = ra[2] + s * ra[3]; s6 = s4 * s2;
     270        S2 = sa[2] + s * sa[3]; s8 = s4 * s4;
     271        R3 = ra[4] + s * ra[5];
     272        S3 = sa[4] + s * sa[5];
     273        R4 = ra[6] + s * ra[7];
     274        S4 = sa[6] + s * sa[7];
     275        R = R1 + s2 * R2 + s4 * R3 + s6 * R4;
     276        S = S1 + s2 * S2 + s4 * S3 + s6 * S4 + s8 * sa[8];
     277      }
     278    else                  /* |x| >= 1/0.35 */
     279      {
     280        double R1, R2, R3, S1, S2, S3, S4, s2, s4, s6;
     281        R1 = rb[0] + s * rb[1]; s2 = s * s;
     282        S1 = one + s * sb[1];  s4 = s2 * s2;
     283        R2 = rb[2] + s * rb[3]; s6 = s4 * s2;
     284        S2 = sb[2] + s * sb[3];
     285        R3 = rb[4] + s * rb[5];
     286        S3 = sb[4] + s * sb[5];
     287        S4 = sb[6] + s * sb[7];
     288        R = R1 + s2 * R2 + s4 * R3 + s6 * rb[6];
     289        S = S1 + s2 * S2 + s4 * S3 + s6 * S4;
     290      }
     291    z = x;
     292    SET_LOW_WORD (z, 0);
     293    r = __ieee754_exp (-z * z - 0.5625) *
     294        __ieee754_exp ((z - x) * (z + x) + R / S);
     295    if (hx >= 0)
     296      return one - r / x;
     297    else
     298      return r / x - one;
     299  }
     300  libm_alias_double (__erf, erf)
     301  
     302  double
     303  __erfc (double x)
     304  {
     305    int32_t hx, ix;
     306    double R, S, P, Q, s, y, z, r;
     307    GET_HIGH_WORD (hx, x);
     308    ix = hx & 0x7fffffff;
     309    if (ix >= 0x7ff00000)                         /* erfc(nan)=nan */
     310      {                                           /* erfc(+-inf)=0,2 */
     311        double ret = (double) (((uint32_t) hx >> 31) << 1) + one / x;
     312        if (FIX_INT_FP_CONVERT_ZERO && ret == 0.0)
     313  	return 0.0;
     314        return ret;
     315      }
     316  
     317    if (ix < 0x3feb0000)                  /* |x|<0.84375 */
     318      {
     319        double r1, r2, s1, s2, s3, z2, z4;
     320        if (ix < 0x3c700000)              /* |x|<2**-56 */
     321  	return one - x;
     322        z = x * x;
     323        r1 = pp[0] + z * pp[1]; z2 = z * z;
     324        r2 = pp[2] + z * pp[3]; z4 = z2 * z2;
     325        s1 = one + z * qq[1];
     326        s2 = qq[2] + z * qq[3];
     327        s3 = qq[4] + z * qq[5];
     328        r = r1 + z2 * r2 + z4 * pp[4];
     329        s = s1 + z2 * s2 + z4 * s3;
     330        y = r / s;
     331        if (hx < 0x3fd00000)              /* x<1/4 */
     332  	{
     333  	  return one - (x + x * y);
     334  	}
     335        else
     336  	{
     337  	  r = x * y;
     338  	  r += (x - half);
     339  	  return half - r;
     340  	}
     341      }
     342    if (ix < 0x3ff40000)                  /* 0.84375 <= |x| < 1.25 */
     343      {
     344        double s2, s4, s6, P1, P2, P3, P4, Q1, Q2, Q3, Q4;
     345        s = fabs (x) - one;
     346        P1 = pa[0] + s * pa[1]; s2 = s * s;
     347        Q1 = one + s * qa[1];   s4 = s2 * s2;
     348        P2 = pa[2] + s * pa[3]; s6 = s4 * s2;
     349        Q2 = qa[2] + s * qa[3];
     350        P3 = pa[4] + s * pa[5];
     351        Q3 = qa[4] + s * qa[5];
     352        P4 = pa[6];
     353        Q4 = qa[6];
     354        P = P1 + s2 * P2 + s4 * P3 + s6 * P4;
     355        Q = Q1 + s2 * Q2 + s4 * Q3 + s6 * Q4;
     356        if (hx >= 0)
     357  	{
     358  	  z = one - erx; return z - P / Q;
     359  	}
     360        else
     361  	{
     362  	  z = erx + P / Q; return one + z;
     363  	}
     364      }
     365    if (ix < 0x403c0000)                  /* |x|<28 */
     366      {
     367        x = fabs (x);
     368        s = one / (x * x);
     369        if (ix < 0x4006DB6D)              /* |x| < 1/.35 ~ 2.857143*/
     370  	{
     371  	  double R1, R2, R3, R4, S1, S2, S3, S4, s2, s4, s6, s8;
     372  	  R1 = ra[0] + s * ra[1]; s2 = s * s;
     373  	  S1 = one + s * sa[1];  s4 = s2 * s2;
     374  	  R2 = ra[2] + s * ra[3]; s6 = s4 * s2;
     375  	  S2 = sa[2] + s * sa[3]; s8 = s4 * s4;
     376  	  R3 = ra[4] + s * ra[5];
     377  	  S3 = sa[4] + s * sa[5];
     378  	  R4 = ra[6] + s * ra[7];
     379  	  S4 = sa[6] + s * sa[7];
     380  	  R = R1 + s2 * R2 + s4 * R3 + s6 * R4;
     381  	  S = S1 + s2 * S2 + s4 * S3 + s6 * S4 + s8 * sa[8];
     382  	}
     383        else                              /* |x| >= 1/.35 ~ 2.857143 */
     384  	{
     385  	  double R1, R2, R3, S1, S2, S3, S4, s2, s4, s6;
     386  	  if (hx < 0 && ix >= 0x40180000)
     387  	    return two - tiny;                           /* x < -6 */
     388  	  R1 = rb[0] + s * rb[1]; s2 = s * s;
     389  	  S1 = one + s * sb[1];  s4 = s2 * s2;
     390  	  R2 = rb[2] + s * rb[3]; s6 = s4 * s2;
     391  	  S2 = sb[2] + s * sb[3];
     392  	  R3 = rb[4] + s * rb[5];
     393  	  S3 = sb[4] + s * sb[5];
     394  	  S4 = sb[6] + s * sb[7];
     395  	  R = R1 + s2 * R2 + s4 * R3 + s6 * rb[6];
     396  	  S = S1 + s2 * S2 + s4 * S3 + s6 * S4;
     397  	}
     398        z = x;
     399        SET_LOW_WORD (z, 0);
     400        r = __ieee754_exp (-z * z - 0.5625) *
     401  	  __ieee754_exp ((z - x) * (z + x) + R / S);
     402        if (hx > 0)
     403  	{
     404  	  double ret = math_narrow_eval (r / x);
     405  	  if (ret == 0)
     406  	    __set_errno (ERANGE);
     407  	  return ret;
     408  	}
     409        else
     410  	return two - r / x;
     411      }
     412    else
     413      {
     414        if (hx > 0)
     415  	{
     416  	  __set_errno (ERANGE);
     417  	  return tiny * tiny;
     418  	}
     419        else
     420  	return two - tiny;
     421      }
     422  }
     423  libm_alias_double (__erfc, erfc)