(root)/
glibc-2.38/
sysdeps/
ieee754/
dbl-64/
e_remainder.c
       1  /*
       2   * IBM Accurate Mathematical Library
       3   * written by International Business Machines Corp.
       4   * Copyright (C) 2001-2023 Free Software Foundation, Inc.
       5   *
       6   * This program is free software; you can redistribute it and/or modify
       7   * it under the terms of the GNU Lesser General Public License as published by
       8   * the Free Software Foundation; either version 2.1 of the License, or
       9   * (at your option) any later version.
      10   *
      11   * This program is distributed in the hope that it will be useful,
      12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
      13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      14   * GNU Lesser General Public License for more details.
      15   *
      16   * You should have received a copy of the GNU Lesser General Public License
      17   * along with this program; if not, see <https://www.gnu.org/licenses/>.
      18   */
      19  /**************************************************************************/
      20  /*  MODULE_NAME urem.c                                                    */
      21  /*                                                                        */
      22  /*  FUNCTION: uremainder                                                  */
      23  /*                                                                        */
      24  /* An ultimate remainder routine. Given two IEEE double machine numbers x */
      25  /* ,y   it computes the correctly rounded (to nearest) value of remainder */
      26  /* of dividing x by y.                                                    */
      27  /* Assumption: Machine arithmetic operations are performed in             */
      28  /* round to nearest mode of IEEE 754 standard.                            */
      29  /*                                                                        */
      30  /* ************************************************************************/
      31  
      32  #include "endian.h"
      33  #include "mydefs.h"
      34  #include "urem.h"
      35  #include <math.h>
      36  #include <math_private.h>
      37  #include <fenv_private.h>
      38  #include <libm-alias-finite.h>
      39  
      40  /**************************************************************************/
      41  /* An ultimate remainder routine. Given two IEEE double machine numbers x */
      42  /* ,y   it computes the correctly rounded (to nearest) value of remainder */
      43  /**************************************************************************/
      44  double
      45  __ieee754_remainder (double x, double y)
      46  {
      47    double z, d, xx;
      48    int4 kx, ky, n, nn, n1, m1, l;
      49    mynumber u, t, w = { { 0, 0 } }, v = { { 0, 0 } }, ww = { { 0, 0 } }, r;
      50    u.x = x;
      51    t.x = y;
      52    kx = u.i[HIGH_HALF] & 0x7fffffff; /* no sign  for x*/
      53    t.i[HIGH_HALF] &= 0x7fffffff;   /*no sign for y */
      54    ky = t.i[HIGH_HALF];
      55    /*------ |x| < 2^1023  and   2^-970 < |y| < 2^1024 ------------------*/
      56    if (kx < 0x7fe00000 && ky < 0x7ff00000 && ky >= 0x03500000)
      57      {
      58        SET_RESTORE_ROUND_NOEX (FE_TONEAREST);
      59        if (kx + 0x00100000 < ky)
      60  	return x;
      61        if ((kx - 0x01500000) < ky)
      62  	{
      63  	  z = x / t.x;
      64  	  v.i[HIGH_HALF] = t.i[HIGH_HALF];
      65  	  d = (z + big.x) - big.x;
      66  	  xx = (x - d * v.x) - d * (t.x - v.x);
      67  	  if (d - z != 0.5 && d - z != -0.5)
      68  	    return (xx != 0) ? xx : ((x > 0) ? ZERO.x : nZERO.x);
      69  	  else
      70  	    {
      71  	      if (fabs (xx) > 0.5 * t.x)
      72  		return (z > d) ? xx - t.x : xx + t.x;
      73  	      else
      74  		return xx;
      75  	    }
      76  	} /*    (kx<(ky+0x01500000))         */
      77        else
      78  	{
      79  	  r.x = 1.0 / t.x;
      80  	  n = t.i[HIGH_HALF];
      81  	  nn = (n & 0x7ff00000) + 0x01400000;
      82  	  w.i[HIGH_HALF] = n;
      83  	  ww.x = t.x - w.x;
      84  	  l = (kx - nn) & 0xfff00000;
      85  	  n1 = ww.i[HIGH_HALF];
      86  	  m1 = r.i[HIGH_HALF];
      87  	  while (l > 0)
      88  	    {
      89  	      r.i[HIGH_HALF] = m1 - l;
      90  	      z = u.x * r.x;
      91  	      w.i[HIGH_HALF] = n + l;
      92  	      ww.i[HIGH_HALF] = (n1) ? n1 + l : n1;
      93  	      d = (z + big.x) - big.x;
      94  	      u.x = (u.x - d * w.x) - d * ww.x;
      95  	      l = (u.i[HIGH_HALF] & 0x7ff00000) - nn;
      96  	    }
      97  	  r.i[HIGH_HALF] = m1;
      98  	  w.i[HIGH_HALF] = n;
      99  	  ww.i[HIGH_HALF] = n1;
     100  	  z = u.x * r.x;
     101  	  d = (z + big.x) - big.x;
     102  	  u.x = (u.x - d * w.x) - d * ww.x;
     103  	  if (fabs (u.x) < 0.5 * t.x)
     104  	    return (u.x != 0) ? u.x : ((x > 0) ? ZERO.x : nZERO.x);
     105  	  else
     106  	  if (fabs (u.x) > 0.5 * t.x)
     107  	    return (d > z) ? u.x + t.x : u.x - t.x;
     108  	  else
     109  	    {
     110  	      z = u.x / t.x; d = (z + big.x) - big.x;
     111                return ((u.x - d * w.x) - d * ww.x);
     112  	    }
     113  	}
     114      } /*   (kx<0x7fe00000&&ky<0x7ff00000&&ky>=0x03500000)     */
     115    else
     116      {
     117        if (kx < 0x7fe00000 && ky < 0x7ff00000 && (ky > 0 || t.i[LOW_HALF] != 0))
     118  	{
     119  	  y = fabs (y) * t128.x;
     120  	  z = __ieee754_remainder (x, y) * t128.x;
     121  	  z = __ieee754_remainder (z, y) * tm128.x;
     122  	  return z;
     123  	}
     124        else
     125  	{
     126  	  if ((kx & 0x7ff00000) == 0x7fe00000 && ky < 0x7ff00000 &&
     127                (ky > 0 || t.i[LOW_HALF] != 0))
     128  	    {
     129  	      y = fabs (y);
     130  	      z = 2.0 * __ieee754_remainder (0.5 * x, y);
     131  	      d = fabs (z);
     132  	      if (d <= fabs (d - y))
     133  		return z;
     134  	      else if (d == y)
     135  		return 0.0 * x;
     136  	      else
     137  		return (z > 0) ? z - y : z + y;
     138  	    }
     139  	  else /* if x is too big */
     140  	    {
     141  	      if (ky == 0 && t.i[LOW_HALF] == 0) /* y = 0 */
     142  		return (x * y) / (x * y);
     143  	      else if (kx >= 0x7ff00000         /* x not finite */
     144  		       || (ky > 0x7ff00000      /* y is NaN */
     145  			   || (ky == 0x7ff00000 && t.i[LOW_HALF] != 0)))
     146  		return (x * y) / (x * y);
     147  	      else
     148  		return x;
     149  	    }
     150  	}
     151      }
     152  }
     153  libm_alias_finite (__ieee754_remainder, __remainder)