(root)/
glibc-2.38/
sysdeps/
ieee754/
dbl-64/
e_pow.c
       1  /* Double-precision x^y function.
       2     Copyright (C) 2018-2023 Free Software Foundation, Inc.
       3     This file is part of the GNU C Library.
       4  
       5     The GNU C Library is free software; you can redistribute it and/or
       6     modify it under the terms of the GNU Lesser General Public
       7     License as published by the Free Software Foundation; either
       8     version 2.1 of the License, or (at your option) any later version.
       9  
      10     The GNU C Library is distributed in the hope that it will be useful,
      11     but WITHOUT ANY WARRANTY; without even the implied warranty of
      12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      13     Lesser General Public License for more details.
      14  
      15     You should have received a copy of the GNU Lesser General Public
      16     License along with the GNU C Library; if not, see
      17     <https://www.gnu.org/licenses/>.  */
      18  
      19  #include <math.h>
      20  #include <stdint.h>
      21  #include <math-barriers.h>
      22  #include <math-narrow-eval.h>
      23  #include <math-svid-compat.h>
      24  #include <libm-alias-finite.h>
      25  #include <libm-alias-double.h>
      26  #include "math_config.h"
      27  
      28  /*
      29  Worst-case error: 0.54 ULP (~= ulperr_exp + 1024*Ln2*relerr_log*2^53)
      30  relerr_log: 1.3 * 2^-68 (Relative error of log, 1.5 * 2^-68 without fma)
      31  ulperr_exp: 0.509 ULP (ULP error of exp, 0.511 ULP without fma)
      32  */
      33  
      34  #define T __pow_log_data.tab
      35  #define A __pow_log_data.poly
      36  #define Ln2hi __pow_log_data.ln2hi
      37  #define Ln2lo __pow_log_data.ln2lo
      38  #define N (1 << POW_LOG_TABLE_BITS)
      39  #define OFF 0x3fe6955500000000
      40  
      41  /* Top 12 bits of a double (sign and exponent bits).  */
      42  static inline uint32_t
      43  top12 (double x)
      44  {
      45    return asuint64 (x) >> 52;
      46  }
      47  
      48  /* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
      49     additional 15 bits precision.  IX is the bit representation of x, but
      50     normalized in the subnormal range using the sign bit for the exponent.  */
      51  static inline double_t
      52  log_inline (uint64_t ix, double_t *tail)
      53  {
      54    /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
      55    double_t z, r, y, invc, logc, logctail, kd, hi, t1, t2, lo, lo1, lo2, p;
      56    uint64_t iz, tmp;
      57    int k, i;
      58  
      59    /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
      60       The range is split into N subintervals.
      61       The ith subinterval contains z and c is near its center.  */
      62    tmp = ix - OFF;
      63    i = (tmp >> (52 - POW_LOG_TABLE_BITS)) % N;
      64    k = (int64_t) tmp >> 52; /* arithmetic shift */
      65    iz = ix - (tmp & 0xfffULL << 52);
      66    z = asdouble (iz);
      67    kd = (double_t) k;
      68  
      69    /* log(x) = k*Ln2 + log(c) + log1p(z/c-1).  */
      70    invc = T[i].invc;
      71    logc = T[i].logc;
      72    logctail = T[i].logctail;
      73  
      74    /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
      75       |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible.  */
      76  #ifdef __FP_FAST_FMA
      77    r = __builtin_fma (z, invc, -1.0);
      78  #else
      79    /* Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|.  */
      80    double_t zhi = asdouble ((iz + (1ULL << 31)) & (-1ULL << 32));
      81    double_t zlo = z - zhi;
      82    double_t rhi = zhi * invc - 1.0;
      83    double_t rlo = zlo * invc;
      84    r = rhi + rlo;
      85  #endif
      86  
      87    /* k*Ln2 + log(c) + r.  */
      88    t1 = kd * Ln2hi + logc;
      89    t2 = t1 + r;
      90    lo1 = kd * Ln2lo + logctail;
      91    lo2 = t1 - t2 + r;
      92  
      93    /* Evaluation is optimized assuming superscalar pipelined execution.  */
      94    double_t ar, ar2, ar3, lo3, lo4;
      95    ar = A[0] * r; /* A[0] = -0.5.  */
      96    ar2 = r * ar;
      97    ar3 = r * ar2;
      98    /* k*Ln2 + log(c) + r + A[0]*r*r.  */
      99  #ifdef __FP_FAST_FMA
     100    hi = t2 + ar2;
     101    lo3 = __builtin_fma (ar, r, -ar2);
     102    lo4 = t2 - hi + ar2;
     103  #else
     104    double_t arhi = A[0] * rhi;
     105    double_t arhi2 = rhi * arhi;
     106    hi = t2 + arhi2;
     107    lo3 = rlo * (ar + arhi);
     108    lo4 = t2 - hi + arhi2;
     109  #endif
     110    /* p = log1p(r) - r - A[0]*r*r.  */
     111    p = (ar3
     112         * (A[1] + r * A[2] + ar2 * (A[3] + r * A[4] + ar2 * (A[5] + r * A[6]))));
     113    lo = lo1 + lo2 + lo3 + lo4 + p;
     114    y = hi + lo;
     115    *tail = hi - y + lo;
     116    return y;
     117  }
     118  
     119  #undef N
     120  #undef T
     121  #define N (1 << EXP_TABLE_BITS)
     122  #define InvLn2N __exp_data.invln2N
     123  #define NegLn2hiN __exp_data.negln2hiN
     124  #define NegLn2loN __exp_data.negln2loN
     125  #define Shift __exp_data.shift
     126  #define T __exp_data.tab
     127  #define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
     128  #define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
     129  #define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
     130  #define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
     131  #define C6 __exp_data.poly[9 - EXP_POLY_ORDER]
     132  
     133  /* Handle cases that may overflow or underflow when computing the result that
     134     is scale*(1+TMP) without intermediate rounding.  The bit representation of
     135     scale is in SBITS, however it has a computed exponent that may have
     136     overflown into the sign bit so that needs to be adjusted before using it as
     137     a double.  (int32_t)KI is the k used in the argument reduction and exponent
     138     adjustment of scale, positive k here means the result may overflow and
     139     negative k means the result may underflow.  */
     140  static inline double
     141  specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
     142  {
     143    double_t scale, y;
     144  
     145    if ((ki & 0x80000000) == 0)
     146      {
     147        /* k > 0, the exponent of scale might have overflowed by <= 460.  */
     148        sbits -= 1009ull << 52;
     149        scale = asdouble (sbits);
     150        y = 0x1p1009 * (scale + scale * tmp);
     151        return check_oflow (y);
     152      }
     153    /* k < 0, need special care in the subnormal range.  */
     154    sbits += 1022ull << 52;
     155    /* Note: sbits is signed scale.  */
     156    scale = asdouble (sbits);
     157    y = scale + scale * tmp;
     158    if (fabs (y) < 1.0)
     159      {
     160        /* Round y to the right precision before scaling it into the subnormal
     161  	 range to avoid double rounding that can cause 0.5+E/2 ulp error where
     162  	 E is the worst-case ulp error outside the subnormal range.  So this
     163  	 is only useful if the goal is better than 1 ulp worst-case error.  */
     164        double_t hi, lo, one = 1.0;
     165        if (y < 0.0)
     166  	one = -1.0;
     167        lo = scale - y + scale * tmp;
     168        hi = one + y;
     169        lo = one - hi + y + lo;
     170        y = math_narrow_eval (hi + lo) - one;
     171        /* Fix the sign of 0.  */
     172        if (y == 0.0)
     173  	y = asdouble (sbits & 0x8000000000000000);
     174        /* The underflow exception needs to be signaled explicitly.  */
     175        math_force_eval (math_opt_barrier (0x1p-1022) * 0x1p-1022);
     176      }
     177    y = 0x1p-1022 * y;
     178    return check_uflow (y);
     179  }
     180  
     181  #define SIGN_BIAS (0x800 << EXP_TABLE_BITS)
     182  
     183  /* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
     184     The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1.  */
     185  static inline double
     186  exp_inline (double x, double xtail, uint32_t sign_bias)
     187  {
     188    uint32_t abstop;
     189    uint64_t ki, idx, top, sbits;
     190    /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
     191    double_t kd, z, r, r2, scale, tail, tmp;
     192  
     193    abstop = top12 (x) & 0x7ff;
     194    if (__glibc_unlikely (abstop - top12 (0x1p-54)
     195  			>= top12 (512.0) - top12 (0x1p-54)))
     196      {
     197        if (abstop - top12 (0x1p-54) >= 0x80000000)
     198  	{
     199  	  /* Avoid spurious underflow for tiny x.  */
     200  	  /* Note: 0 is common input.  */
     201  	  double_t one = WANT_ROUNDING ? 1.0 + x : 1.0;
     202  	  return sign_bias ? -one : one;
     203  	}
     204        if (abstop >= top12 (1024.0))
     205  	{
     206  	  /* Note: inf and nan are already handled.  */
     207  	  if (asuint64 (x) >> 63)
     208  	    return __math_uflow (sign_bias);
     209  	  else
     210  	    return __math_oflow (sign_bias);
     211  	}
     212        /* Large x is special cased below.  */
     213        abstop = 0;
     214      }
     215  
     216    /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)].  */
     217    /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N].  */
     218    z = InvLn2N * x;
     219  #if TOINT_INTRINSICS
     220    /* z - kd is in [-0.5, 0.5] in all rounding modes.  */
     221    kd = roundtoint (z);
     222    ki = converttoint (z);
     223  #else
     224    /* z - kd is in [-1, 1] in non-nearest rounding modes.  */
     225    kd = math_narrow_eval (z + Shift);
     226    ki = asuint64 (kd);
     227    kd -= Shift;
     228  #endif
     229    r = x + kd * NegLn2hiN + kd * NegLn2loN;
     230    /* The code assumes 2^-200 < |xtail| < 2^-8/N.  */
     231    r += xtail;
     232    /* 2^(k/N) ~= scale * (1 + tail).  */
     233    idx = 2 * (ki % N);
     234    top = (ki + sign_bias) << (52 - EXP_TABLE_BITS);
     235    tail = asdouble (T[idx]);
     236    /* This is only a valid scale when -1023*N < k < 1024*N.  */
     237    sbits = T[idx + 1] + top;
     238    /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1).  */
     239    /* Evaluation is optimized assuming superscalar pipelined execution.  */
     240    r2 = r * r;
     241    /* Without fma the worst case error is 0.25/N ulp larger.  */
     242    /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp.  */
     243    tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
     244    if (__glibc_unlikely (abstop == 0))
     245      return specialcase (tmp, sbits, ki);
     246    scale = asdouble (sbits);
     247    /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
     248       is no spurious underflow here even without fma.  */
     249    return scale + scale * tmp;
     250  }
     251  
     252  /* Returns 0 if not int, 1 if odd int, 2 if even int.  The argument is
     253     the bit representation of a non-zero finite floating-point value.  */
     254  static inline int
     255  checkint (uint64_t iy)
     256  {
     257    int e = iy >> 52 & 0x7ff;
     258    if (e < 0x3ff)
     259      return 0;
     260    if (e > 0x3ff + 52)
     261      return 2;
     262    if (iy & ((1ULL << (0x3ff + 52 - e)) - 1))
     263      return 0;
     264    if (iy & (1ULL << (0x3ff + 52 - e)))
     265      return 1;
     266    return 2;
     267  }
     268  
     269  /* Returns 1 if input is the bit representation of 0, infinity or nan.  */
     270  static inline int
     271  zeroinfnan (uint64_t i)
     272  {
     273    return 2 * i - 1 >= 2 * asuint64 (INFINITY) - 1;
     274  }
     275  
     276  #ifndef SECTION
     277  # define SECTION
     278  #endif
     279  
     280  double
     281  SECTION
     282  __pow (double x, double y)
     283  {
     284    uint32_t sign_bias = 0;
     285    uint64_t ix, iy;
     286    uint32_t topx, topy;
     287  
     288    ix = asuint64 (x);
     289    iy = asuint64 (y);
     290    topx = top12 (x);
     291    topy = top12 (y);
     292    if (__glibc_unlikely (topx - 0x001 >= 0x7ff - 0x001
     293  			|| (topy & 0x7ff) - 0x3be >= 0x43e - 0x3be))
     294      {
     295        /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0
     296  	 and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1.  */
     297        /* Special cases: (x < 0x1p-126 or inf or nan) or
     298  	 (|y| < 0x1p-65 or |y| >= 0x1p63 or nan).  */
     299        if (__glibc_unlikely (zeroinfnan (iy)))
     300  	{
     301  	  if (2 * iy == 0)
     302  	    return issignaling_inline (x) ? x + y : 1.0;
     303  	  if (ix == asuint64 (1.0))
     304  	    return issignaling_inline (y) ? x + y : 1.0;
     305  	  if (2 * ix > 2 * asuint64 (INFINITY)
     306  	      || 2 * iy > 2 * asuint64 (INFINITY))
     307  	    return x + y;
     308  	  if (2 * ix == 2 * asuint64 (1.0))
     309  	    return 1.0;
     310  	  if ((2 * ix < 2 * asuint64 (1.0)) == !(iy >> 63))
     311  	    return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf.  */
     312  	  return y * y;
     313  	}
     314        if (__glibc_unlikely (zeroinfnan (ix)))
     315  	{
     316  	  double_t x2 = x * x;
     317  	  if (ix >> 63 && checkint (iy) == 1)
     318  	    {
     319  	      x2 = -x2;
     320  	      sign_bias = 1;
     321  	    }
     322  	  if (WANT_ERRNO && 2 * ix == 0 && iy >> 63)
     323  	    return __math_divzero (sign_bias);
     324  	  /* Without the barrier some versions of clang hoist the 1/x2 and
     325  	     thus division by zero exception can be signaled spuriously.  */
     326  	  return iy >> 63 ? math_opt_barrier (1 / x2) : x2;
     327  	}
     328        /* Here x and y are non-zero finite.  */
     329        if (ix >> 63)
     330  	{
     331  	  /* Finite x < 0.  */
     332  	  int yint = checkint (iy);
     333  	  if (yint == 0)
     334  	    return __math_invalid (x);
     335  	  if (yint == 1)
     336  	    sign_bias = SIGN_BIAS;
     337  	  ix &= 0x7fffffffffffffff;
     338  	  topx &= 0x7ff;
     339  	}
     340        if ((topy & 0x7ff) - 0x3be >= 0x43e - 0x3be)
     341  	{
     342  	  /* Note: sign_bias == 0 here because y is not odd.  */
     343  	  if (ix == asuint64 (1.0))
     344  	    return 1.0;
     345  	  if ((topy & 0x7ff) < 0x3be)
     346  	    {
     347  	      /* |y| < 2^-65, x^y ~= 1 + y*log(x).  */
     348  	      if (WANT_ROUNDING)
     349  		return ix > asuint64 (1.0) ? 1.0 + y : 1.0 - y;
     350  	      else
     351  		return 1.0;
     352  	    }
     353  	  return (ix > asuint64 (1.0)) == (topy < 0x800) ? __math_oflow (0)
     354  							 : __math_uflow (0);
     355  	}
     356        if (topx == 0)
     357  	{
     358  	  /* Normalize subnormal x so exponent becomes negative.  */
     359  	  ix = asuint64 (x * 0x1p52);
     360  	  ix &= 0x7fffffffffffffff;
     361  	  ix -= 52ULL << 52;
     362  	}
     363      }
     364  
     365    double_t lo;
     366    double_t hi = log_inline (ix, &lo);
     367    double_t ehi, elo;
     368  #ifdef __FP_FAST_FMA
     369    ehi = y * hi;
     370    elo = y * lo + __builtin_fma (y, hi, -ehi);
     371  #else
     372    double_t yhi = asdouble (iy & -1ULL << 27);
     373    double_t ylo = y - yhi;
     374    double_t lhi = asdouble (asuint64 (hi) & -1ULL << 27);
     375    double_t llo = hi - lhi + lo;
     376    ehi = yhi * lhi;
     377    elo = ylo * lhi + y * llo; /* |elo| < |ehi| * 2^-25.  */
     378  #endif
     379    return exp_inline (ehi, elo, sign_bias);
     380  }
     381  #ifndef __pow
     382  strong_alias (__pow, __ieee754_pow)
     383  libm_alias_finite (__ieee754_pow, __pow)
     384  # if LIBM_SVID_COMPAT
     385  versioned_symbol (libm, __pow, pow, GLIBC_2_29);
     386  libm_alias_double_other (__pow, pow)
     387  # else
     388  libm_alias_double (__pow, pow)
     389  # endif
     390  #endif