(root)/
glibc-2.38/
sysdeps/
ieee754/
dbl-64/
e_log.c
       1  /* Double-precision log(x) function.
       2     Copyright (C) 2018-2023 Free Software Foundation, Inc.
       3     This file is part of the GNU C Library.
       4  
       5     The GNU C Library is free software; you can redistribute it and/or
       6     modify it under the terms of the GNU Lesser General Public
       7     License as published by the Free Software Foundation; either
       8     version 2.1 of the License, or (at your option) any later version.
       9  
      10     The GNU C Library is distributed in the hope that it will be useful,
      11     but WITHOUT ANY WARRANTY; without even the implied warranty of
      12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      13     Lesser General Public License for more details.
      14  
      15     You should have received a copy of the GNU Lesser General Public
      16     License along with the GNU C Library; if not, see
      17     <https://www.gnu.org/licenses/>.  */
      18  
      19  #include <math.h>
      20  #include <stdint.h>
      21  #include <math-svid-compat.h>
      22  #include <libm-alias-finite.h>
      23  #include <libm-alias-double.h>
      24  #include "math_config.h"
      25  
      26  #define T __log_data.tab
      27  #define T2 __log_data.tab2
      28  #define B __log_data.poly1
      29  #define A __log_data.poly
      30  #define Ln2hi __log_data.ln2hi
      31  #define Ln2lo __log_data.ln2lo
      32  #define N (1 << LOG_TABLE_BITS)
      33  #define OFF 0x3fe6000000000000
      34  
      35  /* Top 16 bits of a double.  */
      36  static inline uint32_t
      37  top16 (double x)
      38  {
      39    return asuint64 (x) >> 48;
      40  }
      41  
      42  #ifndef SECTION
      43  # define SECTION
      44  #endif
      45  
      46  double
      47  SECTION
      48  __log (double x)
      49  {
      50    /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
      51    double_t w, z, r, r2, r3, y, invc, logc, kd, hi, lo;
      52    uint64_t ix, iz, tmp;
      53    uint32_t top;
      54    int k, i;
      55  
      56    ix = asuint64 (x);
      57    top = top16 (x);
      58  
      59  #define LO asuint64 (1.0 - 0x1p-4)
      60  #define HI asuint64 (1.0 + 0x1.09p-4)
      61    if (__glibc_unlikely (ix - LO < HI - LO))
      62      {
      63        /* Handle close to 1.0 inputs separately.  */
      64        /* Fix sign of zero with downward rounding when x==1.  */
      65        if (WANT_ROUNDING && __glibc_unlikely (ix == asuint64 (1.0)))
      66  	return 0;
      67        r = x - 1.0;
      68        r2 = r * r;
      69        r3 = r * r2;
      70        y = r3 * (B[1] + r * B[2] + r2 * B[3]
      71  		+ r3 * (B[4] + r * B[5] + r2 * B[6]
      72  			+ r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10])));
      73        /* Worst-case error is around 0.507 ULP.  */
      74        w = r * 0x1p27;
      75        double_t rhi = r + w - w;
      76        double_t rlo = r - rhi;
      77        w = rhi * rhi * B[0]; /* B[0] == -0.5.  */
      78        hi = r + w;
      79        lo = r - hi + w;
      80        lo += B[0] * rlo * (rhi + r);
      81        y += lo;
      82        y += hi;
      83        return y;
      84      }
      85    if (__glibc_unlikely (top - 0x0010 >= 0x7ff0 - 0x0010))
      86      {
      87        /* x < 0x1p-1022 or inf or nan.  */
      88        if (ix * 2 == 0)
      89  	return __math_divzero (1);
      90        if (ix == asuint64 (INFINITY)) /* log(inf) == inf.  */
      91  	return x;
      92        if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
      93  	return __math_invalid (x);
      94        /* x is subnormal, normalize it.  */
      95        ix = asuint64 (x * 0x1p52);
      96        ix -= 52ULL << 52;
      97      }
      98  
      99    /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
     100       The range is split into N subintervals.
     101       The ith subinterval contains z and c is near its center.  */
     102    tmp = ix - OFF;
     103    i = (tmp >> (52 - LOG_TABLE_BITS)) % N;
     104    k = (int64_t) tmp >> 52; /* arithmetic shift */
     105    iz = ix - (tmp & 0xfffULL << 52);
     106    invc = T[i].invc;
     107    logc = T[i].logc;
     108    z = asdouble (iz);
     109  
     110    /* log(x) = log1p(z/c-1) + log(c) + k*Ln2.  */
     111    /* r ~= z/c - 1, |r| < 1/(2*N).  */
     112  #ifdef __FP_FAST_FMA
     113    /* rounding error: 0x1p-55/N.  */
     114    r = __builtin_fma (z, invc, -1.0);
     115  #else
     116    /* rounding error: 0x1p-55/N + 0x1p-66.  */
     117    r = (z - T2[i].chi - T2[i].clo) * invc;
     118  #endif
     119    kd = (double_t) k;
     120  
     121    /* hi + lo = r + log(c) + k*Ln2.  */
     122    w = kd * Ln2hi + logc;
     123    hi = w + r;
     124    lo = w - hi + r + kd * Ln2lo;
     125  
     126    /* log(x) = lo + (log1p(r) - r) + hi.  */
     127    r2 = r * r; /* rounding error: 0x1p-54/N^2.  */
     128    /* Worst case error if |y| > 0x1p-4: 0.519 ULP (0.520 ULP without fma).
     129       0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma).  */
     130    y = lo + r2 * A[0] + r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi;
     131    return y;
     132  }
     133  #ifndef __log
     134  strong_alias (__log, __ieee754_log)
     135  libm_alias_finite (__ieee754_log, __log)
     136  # if LIBM_SVID_COMPAT
     137  versioned_symbol (libm, __log, log, GLIBC_2_29);
     138  libm_alias_double_other (__log, log)
     139  # else
     140  libm_alias_double (__log, log)
     141  # endif
     142  #endif