(root)/
glibc-2.38/
sysdeps/
ieee754/
dbl-64/
e_j0.c
       1  /* @(#)e_j0.c 5.1 93/09/24 */
       2  /*
       3   * ====================================================
       4   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
       5   *
       6   * Developed at SunPro, a Sun Microsystems, Inc. business.
       7   * Permission to use, copy, modify, and distribute this
       8   * software is freely granted, provided that this notice
       9   * is preserved.
      10   * ====================================================
      11   */
      12  /* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/26,
      13     for performance improvement on pipelined processors.
      14   */
      15  
      16  /* __ieee754_j0(x), __ieee754_y0(x)
      17   * Bessel function of the first and second kinds of order zero.
      18   * Method -- j0(x):
      19   *	1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
      20   *	2. Reduce x to |x| since j0(x)=j0(-x),  and
      21   *	   for x in (0,2)
      22   *		j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
      23   *	   (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
      24   *	   for x in (2,inf)
      25   *		j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
      26   *	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
      27   *	   as follow:
      28   *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
      29   *			= 1/sqrt(2) * (cos(x) + sin(x))
      30   *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
      31   *			= 1/sqrt(2) * (sin(x) - cos(x))
      32   *	   (To avoid cancellation, use
      33   *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
      34   *	    to compute the worse one.)
      35   *
      36   *	3 Special cases
      37   *		j0(nan)= nan
      38   *		j0(0) = 1
      39   *		j0(inf) = 0
      40   *
      41   * Method -- y0(x):
      42   *	1. For x<2.
      43   *	   Since
      44   *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
      45   *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
      46   *	   We use the following function to approximate y0,
      47   *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
      48   *	   where
      49   *		U(z) = u00 + u01*z + ... + u06*z^6
      50   *		V(z) = 1  + v01*z + ... + v04*z^4
      51   *	   with absolute approximation error bounded by 2**-72.
      52   *	   Note: For tiny x, U/V = u0 and j0(x)~1, hence
      53   *		y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
      54   *	2. For x>=2.
      55   *		y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
      56   *	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
      57   *	   by the method mentioned above.
      58   *	3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
      59   */
      60  
      61  #include <math.h>
      62  #include <math-barriers.h>
      63  #include <math_private.h>
      64  #include <libm-alias-finite.h>
      65  
      66  static double pzero (double), qzero (double);
      67  
      68  static const double
      69    huge = 1e300,
      70    one = 1.0,
      71    invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
      72    tpi = 6.36619772367581382433e-01,     /* 0x3FE45F30, 0x6DC9C883 */
      73  /* R0/S0 on [0, 2.00] */
      74    R[] = { 0.0, 0.0, 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
      75  	  -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
      76  	  1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
      77  	  -4.61832688532103189199e-09 }, /* 0xBE33D5E7, 0x73D63FCE */
      78    S[] = { 0.0, 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
      79  	  1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
      80  	  5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
      81  	  1.16614003333790000205e-09 }; /* 0x3E1408BC, 0xF4745D8F */
      82  
      83  static const double zero = 0.0;
      84  
      85  double
      86  __ieee754_j0 (double x)
      87  {
      88    double z, s, c, ss, cc, r, u, v, r1, r2, s1, s2, z2, z4;
      89    int32_t hx, ix;
      90  
      91    GET_HIGH_WORD (hx, x);
      92    ix = hx & 0x7fffffff;
      93    if (ix >= 0x7ff00000)
      94      return one / (x * x);
      95    x = fabs (x);
      96    if (ix >= 0x40000000)         /* |x| >= 2.0 */
      97      {
      98        __sincos (x, &s, &c);
      99        ss = s - c;
     100        cc = s + c;
     101        if (ix < 0x7fe00000)           /* make sure x+x not overflow */
     102  	{
     103  	  z = -__cos (x + x);
     104  	  if ((s * c) < zero)
     105  	    cc = z / ss;
     106  	  else
     107  	    ss = z / cc;
     108  	}
     109        /*
     110         * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
     111         * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
     112         */
     113        if (ix > 0x48000000)
     114  	z = (invsqrtpi * cc) / sqrt (x);
     115        else
     116  	{
     117  	  u = pzero (x); v = qzero (x);
     118  	  z = invsqrtpi * (u * cc - v * ss) / sqrt (x);
     119  	}
     120        return z;
     121      }
     122    if (ix < 0x3f200000)          /* |x| < 2**-13 */
     123      {
     124        math_force_eval (huge + x);       /* raise inexact if x != 0 */
     125        if (ix < 0x3e400000)
     126  	return one;                     /* |x|<2**-27 */
     127        else
     128  	return one - 0.25 * x * x;
     129      }
     130    z = x * x;
     131    r1 = z * R[2]; z2 = z * z;
     132    r2 = R[3] + z * R[4]; z4 = z2 * z2;
     133    r = r1 + z2 * r2 + z4 * R[5];
     134    s1 = one + z * S[1];
     135    s2 = S[2] + z * S[3];
     136    s = s1 + z2 * s2 + z4 * S[4];
     137    if (ix < 0x3FF00000)          /* |x| < 1.00 */
     138      {
     139        return one + z * (-0.25 + (r / s));
     140      }
     141    else
     142      {
     143        u = 0.5 * x;
     144        return ((one + u) * (one - u) + z * (r / s));
     145      }
     146  }
     147  libm_alias_finite (__ieee754_j0, __j0)
     148  
     149  static const double
     150  U[] = { -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
     151  	 1.76666452509181115538e-01,  /* 0x3FC69D01, 0x9DE9E3FC */
     152  	-1.38185671945596898896e-02,  /* 0xBF8C4CE8, 0xB16CFA97 */
     153  	 3.47453432093683650238e-04,  /* 0x3F36C54D, 0x20B29B6B */
     154  	-3.81407053724364161125e-06,  /* 0xBECFFEA7, 0x73D25CAD */
     155  	 1.95590137035022920206e-08,  /* 0x3E550057, 0x3B4EABD4 */
     156  	-3.98205194132103398453e-11 }, /* 0xBDC5E43D, 0x693FB3C8 */
     157  V[] = { 1.27304834834123699328e-02,   /* 0x3F8A1270, 0x91C9C71A */
     158  	 7.60068627350353253702e-05,   /* 0x3F13ECBB, 0xF578C6C1 */
     159  	 2.59150851840457805467e-07,   /* 0x3E91642D, 0x7FF202FD */
     160  	 4.41110311332675467403e-10 }; /* 0x3DFE5018, 0x3BD6D9EF */
     161  
     162  double
     163  __ieee754_y0 (double x)
     164  {
     165    double z, s, c, ss, cc, u, v, z2, z4, z6, u1, u2, u3, v1, v2;
     166    int32_t hx, ix, lx;
     167  
     168    EXTRACT_WORDS (hx, lx, x);
     169    ix = 0x7fffffff & hx;
     170    /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0, y0(0) is -inf.  */
     171    if (ix >= 0x7ff00000)
     172      return one / (x + x * x);
     173    if ((ix | lx) == 0)
     174      return -1 / zero; /* -inf and divide by zero exception.  */
     175    if (hx < 0)
     176      return zero / (zero * x);
     177    if (ix >= 0x40000000)         /* |x| >= 2.0 */
     178      {   /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
     179  		 * where x0 = x-pi/4
     180  		 *      Better formula:
     181  		 *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
     182  		 *                      =  1/sqrt(2) * (sin(x) + cos(x))
     183  		 *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
     184  		 *                      =  1/sqrt(2) * (sin(x) - cos(x))
     185  		 * To avoid cancellation, use
     186  		 *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
     187  		 * to compute the worse one.
     188  		 */
     189        __sincos (x, &s, &c);
     190        ss = s - c;
     191        cc = s + c;
     192        /*
     193         * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
     194         * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
     195         */
     196        if (ix < 0x7fe00000)           /* make sure x+x not overflow */
     197  	{
     198  	  z = -__cos (x + x);
     199  	  if ((s * c) < zero)
     200  	    cc = z / ss;
     201  	  else
     202  	    ss = z / cc;
     203  	}
     204        if (ix > 0x48000000)
     205  	z = (invsqrtpi * ss) / sqrt (x);
     206        else
     207  	{
     208  	  u = pzero (x); v = qzero (x);
     209  	  z = invsqrtpi * (u * ss + v * cc) / sqrt (x);
     210  	}
     211        return z;
     212      }
     213    if (ix <= 0x3e400000)         /* x < 2**-27 */
     214      {
     215        return (U[0] + tpi * __ieee754_log (x));
     216      }
     217    z = x * x;
     218    u1 = U[0] + z * U[1]; z2 = z * z;
     219    u2 = U[2] + z * U[3]; z4 = z2 * z2;
     220    u3 = U[4] + z * U[5]; z6 = z4 * z2;
     221    u = u1 + z2 * u2 + z4 * u3 + z6 * U[6];
     222    v1 = one + z * V[0];
     223    v2 = V[1] + z * V[2];
     224    v = v1 + z2 * v2 + z4 * V[3];
     225    return (u / v + tpi * (__ieee754_j0 (x) * __ieee754_log (x)));
     226  }
     227  libm_alias_finite (__ieee754_y0, __y0)
     228  
     229  /* The asymptotic expansions of pzero is
     230   *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
     231   * For x >= 2, We approximate pzero by
     232   *	pzero(x) = 1 + (R/S)
     233   * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
     234   *	  S = 1 + pS0*s^2 + ... + pS4*s^10
     235   * and
     236   *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
     237   */
     238  static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
     239    0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
     240   -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
     241   -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
     242   -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
     243   -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
     244   -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
     245  };
     246  static const double pS8[5] = {
     247    1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
     248    3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
     249    4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
     250    1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
     251    4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
     252  };
     253  
     254  static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
     255   -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
     256   -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
     257   -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
     258   -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
     259   -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
     260   -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
     261  };
     262  static const double pS5[5] = {
     263    6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
     264    1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
     265    5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
     266    9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
     267    2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
     268  };
     269  
     270  static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
     271   -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
     272   -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
     273   -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
     274   -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
     275   -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
     276   -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
     277  };
     278  static const double pS3[5] = {
     279    3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
     280    3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
     281    1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
     282    1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
     283    1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
     284  };
     285  
     286  static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
     287   -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
     288   -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
     289   -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
     290   -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
     291   -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
     292   -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
     293  };
     294  static const double pS2[5] = {
     295    2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
     296    1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
     297    2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
     298    1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
     299    1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
     300  };
     301  
     302  static double
     303  pzero (double x)
     304  {
     305    const double *p, *q;
     306    double z, r, s, z2, z4, r1, r2, r3, s1, s2, s3;
     307    int32_t ix;
     308    GET_HIGH_WORD (ix, x);
     309    ix &= 0x7fffffff;
     310    /* ix >= 0x40000000 for all calls to this function.  */
     311    if (ix >= 0x41b00000)
     312      {
     313        return one;
     314      }
     315    else if (ix >= 0x40200000)
     316      {
     317        p = pR8; q = pS8;
     318      }
     319    else if (ix >= 0x40122E8B)
     320      {
     321        p = pR5; q = pS5;
     322      }
     323    else if (ix >= 0x4006DB6D)
     324      {
     325        p = pR3; q = pS3;
     326      }
     327    else
     328      {
     329        p = pR2; q = pS2;
     330      }
     331    z = one / (x * x);
     332    r1 = p[0] + z * p[1]; z2 = z * z;
     333    r2 = p[2] + z * p[3]; z4 = z2 * z2;
     334    r3 = p[4] + z * p[5];
     335    r = r1 + z2 * r2 + z4 * r3;
     336    s1 = one + z * q[0];
     337    s2 = q[1] + z * q[2];
     338    s3 = q[3] + z * q[4];
     339    s = s1 + z2 * s2 + z4 * s3;
     340    return one + r / s;
     341  }
     342  
     343  
     344  /* For x >= 8, the asymptotic expansions of qzero is
     345   *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
     346   * We approximate pzero by
     347   *	qzero(x) = s*(-1.25 + (R/S))
     348   * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
     349   *	  S = 1 + qS0*s^2 + ... + qS5*s^12
     350   * and
     351   *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
     352   */
     353  static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
     354    0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
     355    7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
     356    1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
     357    5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
     358    8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
     359    3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
     360  };
     361  static const double qS8[6] = {
     362    1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
     363    8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
     364    1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
     365    8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
     366    8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
     367   -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
     368  };
     369  
     370  static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
     371    1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
     372    7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
     373    5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
     374    1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
     375    1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
     376    1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
     377  };
     378  static const double qS5[6] = {
     379    8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
     380    2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
     381    1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
     382    5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
     383    3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
     384   -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
     385  };
     386  
     387  static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
     388    4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
     389    7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
     390    3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
     391    4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
     392    1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
     393    1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
     394  };
     395  static const double qS3[6] = {
     396    4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
     397    7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
     398    3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
     399    6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
     400    2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
     401   -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
     402  };
     403  
     404  static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
     405    1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
     406    7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
     407    1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
     408    1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
     409    3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
     410    1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
     411  };
     412  static const double qS2[6] = {
     413    3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
     414    2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
     415    8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
     416    8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
     417    2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
     418   -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
     419  };
     420  
     421  static double
     422  qzero (double x)
     423  {
     424    const double *p, *q;
     425    double s, r, z, z2, z4, z6, r1, r2, r3, s1, s2, s3;
     426    int32_t ix;
     427    GET_HIGH_WORD (ix, x);
     428    ix &= 0x7fffffff;
     429    /* ix >= 0x40000000 for all calls to this function.  */
     430    if (ix >= 0x41b00000)
     431      {
     432        return -.125 / x;
     433      }
     434    else if (ix >= 0x40200000)
     435      {
     436        p = qR8; q = qS8;
     437      }
     438    else if (ix >= 0x40122E8B)
     439      {
     440        p = qR5; q = qS5;
     441      }
     442    else if (ix >= 0x4006DB6D)
     443      {
     444        p = qR3; q = qS3;
     445      }
     446    else
     447      {
     448        p = qR2; q = qS2;
     449      }
     450    z = one / (x * x);
     451    r1 = p[0] + z * p[1]; z2 = z * z;
     452    r2 = p[2] + z * p[3]; z4 = z2 * z2;
     453    r3 = p[4] + z * p[5]; z6 = z4 * z2;
     454    r = r1 + z2 * r2 + z4 * r3;
     455    s1 = one + z * q[0];
     456    s2 = q[1] + z * q[2];
     457    s3 = q[3] + z * q[4];
     458    s = s1 + z2 * s2 + z4 * s3 + z6 * q[5];
     459    return (-.125 + r / s) / x;
     460  }