(root)/
glibc-2.38/
sysdeps/
ieee754/
dbl-64/
e_exp.c
       1  /* Double-precision e^x function.
       2     Copyright (C) 2018-2023 Free Software Foundation, Inc.
       3     This file is part of the GNU C Library.
       4  
       5     The GNU C Library is free software; you can redistribute it and/or
       6     modify it under the terms of the GNU Lesser General Public
       7     License as published by the Free Software Foundation; either
       8     version 2.1 of the License, or (at your option) any later version.
       9  
      10     The GNU C Library is distributed in the hope that it will be useful,
      11     but WITHOUT ANY WARRANTY; without even the implied warranty of
      12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      13     Lesser General Public License for more details.
      14  
      15     You should have received a copy of the GNU Lesser General Public
      16     License along with the GNU C Library; if not, see
      17     <https://www.gnu.org/licenses/>.  */
      18  
      19  #include <math.h>
      20  #include <stdint.h>
      21  #include <math-barriers.h>
      22  #include <math-narrow-eval.h>
      23  #include <math-svid-compat.h>
      24  #include <libm-alias-finite.h>
      25  #include <libm-alias-double.h>
      26  #include "math_config.h"
      27  
      28  #define N (1 << EXP_TABLE_BITS)
      29  #define InvLn2N __exp_data.invln2N
      30  #define NegLn2hiN __exp_data.negln2hiN
      31  #define NegLn2loN __exp_data.negln2loN
      32  #define Shift __exp_data.shift
      33  #define T __exp_data.tab
      34  #define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
      35  #define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
      36  #define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
      37  #define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
      38  
      39  /* Handle cases that may overflow or underflow when computing the result that
      40     is scale*(1+TMP) without intermediate rounding.  The bit representation of
      41     scale is in SBITS, however it has a computed exponent that may have
      42     overflown into the sign bit so that needs to be adjusted before using it as
      43     a double.  (int32_t)KI is the k used in the argument reduction and exponent
      44     adjustment of scale, positive k here means the result may overflow and
      45     negative k means the result may underflow.  */
      46  static inline double
      47  specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
      48  {
      49    double_t scale, y;
      50  
      51    if ((ki & 0x80000000) == 0)
      52      {
      53        /* k > 0, the exponent of scale might have overflowed by <= 460.  */
      54        sbits -= 1009ull << 52;
      55        scale = asdouble (sbits);
      56        y = 0x1p1009 * (scale + scale * tmp);
      57        return check_oflow (y);
      58      }
      59    /* k < 0, need special care in the subnormal range.  */
      60    sbits += 1022ull << 52;
      61    scale = asdouble (sbits);
      62    y = scale + scale * tmp;
      63    if (y < 1.0)
      64      {
      65        /* Round y to the right precision before scaling it into the subnormal
      66  	 range to avoid double rounding that can cause 0.5+E/2 ulp error where
      67  	 E is the worst-case ulp error outside the subnormal range.  So this
      68  	 is only useful if the goal is better than 1 ulp worst-case error.  */
      69        double_t hi, lo;
      70        lo = scale - y + scale * tmp;
      71        hi = 1.0 + y;
      72        lo = 1.0 - hi + y + lo;
      73        y = math_narrow_eval (hi + lo) - 1.0;
      74        /* Avoid -0.0 with downward rounding.  */
      75        if (WANT_ROUNDING && y == 0.0)
      76  	y = 0.0;
      77        /* The underflow exception needs to be signaled explicitly.  */
      78        math_force_eval (math_opt_barrier (0x1p-1022) * 0x1p-1022);
      79      }
      80    y = 0x1p-1022 * y;
      81    return check_uflow (y);
      82  }
      83  
      84  /* Top 12 bits of a double (sign and exponent bits).  */
      85  static inline uint32_t
      86  top12 (double x)
      87  {
      88    return asuint64 (x) >> 52;
      89  }
      90  
      91  #ifndef SECTION
      92  # define SECTION
      93  #endif
      94  
      95  double
      96  SECTION
      97  __exp (double x)
      98  {
      99    uint32_t abstop;
     100    uint64_t ki, idx, top, sbits;
     101    /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
     102    double_t kd, z, r, r2, scale, tail, tmp;
     103  
     104    abstop = top12 (x) & 0x7ff;
     105    if (__glibc_unlikely (abstop - top12 (0x1p-54)
     106  			>= top12 (512.0) - top12 (0x1p-54)))
     107      {
     108        if (abstop - top12 (0x1p-54) >= 0x80000000)
     109  	/* Avoid spurious underflow for tiny x.  */
     110  	/* Note: 0 is common input.  */
     111  	return WANT_ROUNDING ? 1.0 + x : 1.0;
     112        if (abstop >= top12 (1024.0))
     113  	{
     114  	  if (asuint64 (x) == asuint64 (-INFINITY))
     115  	    return 0.0;
     116  	  if (abstop >= top12 (INFINITY))
     117  	    return 1.0 + x;
     118  	  if (asuint64 (x) >> 63)
     119  	    return __math_uflow (0);
     120  	  else
     121  	    return __math_oflow (0);
     122  	}
     123        /* Large x is special cased below.  */
     124        abstop = 0;
     125      }
     126  
     127    /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)].  */
     128    /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N].  */
     129    z = InvLn2N * x;
     130  #if TOINT_INTRINSICS
     131    kd = roundtoint (z);
     132    ki = converttoint (z);
     133  #else
     134    /* z - kd is in [-1, 1] in non-nearest rounding modes.  */
     135    kd = math_narrow_eval (z + Shift);
     136    ki = asuint64 (kd);
     137    kd -= Shift;
     138  #endif
     139    r = x + kd * NegLn2hiN + kd * NegLn2loN;
     140    /* 2^(k/N) ~= scale * (1 + tail).  */
     141    idx = 2 * (ki % N);
     142    top = ki << (52 - EXP_TABLE_BITS);
     143    tail = asdouble (T[idx]);
     144    /* This is only a valid scale when -1023*N < k < 1024*N.  */
     145    sbits = T[idx + 1] + top;
     146    /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1).  */
     147    /* Evaluation is optimized assuming superscalar pipelined execution.  */
     148    r2 = r * r;
     149    /* Without fma the worst case error is 0.25/N ulp larger.  */
     150    /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp.  */
     151    tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
     152    if (__glibc_unlikely (abstop == 0))
     153      return specialcase (tmp, sbits, ki);
     154    scale = asdouble (sbits);
     155    /* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-739, so there
     156       is no spurious underflow here even without fma.  */
     157    return scale + scale * tmp;
     158  }
     159  #ifndef __exp
     160  hidden_def (__exp)
     161  strong_alias (__exp, __ieee754_exp)
     162  libm_alias_finite (__ieee754_exp, __exp)
     163  # if LIBM_SVID_COMPAT
     164  versioned_symbol (libm, __exp, exp, GLIBC_2_29);
     165  libm_alias_double_other (__exp, exp)
     166  # else
     167  libm_alias_double (__exp, exp)
     168  # endif
     169  #endif