(root)/
glibc-2.38/
sysdeps/
ieee754/
dbl-64/
e_atan2.c
       1  /*
       2   * IBM Accurate Mathematical Library
       3   * written by International Business Machines Corp.
       4   * Copyright (C) 2001-2023 Free Software Foundation, Inc.
       5   *
       6   * This program is free software; you can redistribute it and/or modify
       7   * it under the terms of the GNU Lesser General Public License as published by
       8   * the Free Software Foundation; either version 2.1 of the License, or
       9   * (at your option) any later version.
      10   *
      11   * This program is distributed in the hope that it will be useful,
      12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
      13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      14   * GNU Lesser General Public License for more details.
      15   *
      16   * You should have received a copy of the GNU Lesser General Public License
      17   * along with this program; if not, see <https://www.gnu.org/licenses/>.
      18   */
      19  /************************************************************************/
      20  /*  MODULE_NAME: atnat2.c                                               */
      21  /*                                                                      */
      22  /*  FUNCTIONS: uatan2                                                   */
      23  /*             signArctan2                                              */
      24  /*                                                                      */
      25  /*  FILES NEEDED: dla.h endian.h mydefs.h atnat2.h                      */
      26  /*                uatan.tbl                                             */
      27  /*                                                                      */
      28  /************************************************************************/
      29  
      30  #include <dla.h>
      31  #include "mydefs.h"
      32  #include "uatan.tbl"
      33  #include "atnat2.h"
      34  #include <fenv.h>
      35  #include <float.h>
      36  #include <math.h>
      37  #include <math-barriers.h>
      38  #include <math_private.h>
      39  #include <fenv_private.h>
      40  #include <libm-alias-finite.h>
      41  
      42  #ifndef SECTION
      43  # define SECTION
      44  #endif
      45  
      46  #define  TWO52     0x1.0p52
      47  #define  TWOM1022  0x1.0p-1022
      48  
      49    /* Fix the sign and return after stage 1 or stage 2 */
      50  static double
      51  signArctan2 (double y, double z)
      52  {
      53    return copysign (z, y);
      54  }
      55  
      56  /* atan2 with max ULP of ~0.524 based on random sampling.  */
      57  double
      58  SECTION
      59  __ieee754_atan2 (double y, double x)
      60  {
      61    int i, de, ux, dx, uy, dy;
      62    double ax, ay, u, du, v, vv, dv, t1, t2, t3,
      63  	 z, zz, cor;
      64    mynumber num;
      65  
      66    static const int ep = 59768832,      /*  57*16**5   */
      67  		   em = -59768832;      /* -57*16**5   */
      68  
      69    /* x=NaN or y=NaN */
      70    num.d = x;
      71    ux = num.i[HIGH_HALF];
      72    dx = num.i[LOW_HALF];
      73    if ((ux & 0x7ff00000) == 0x7ff00000)
      74      {
      75        if (((ux & 0x000fffff) | dx) != 0x00000000)
      76  	return x + y;
      77      }
      78    num.d = y;
      79    uy = num.i[HIGH_HALF];
      80    dy = num.i[LOW_HALF];
      81    if ((uy & 0x7ff00000) == 0x7ff00000)
      82      {
      83        if (((uy & 0x000fffff) | dy) != 0x00000000)
      84  	return y + y;
      85      }
      86  
      87    /* y=+-0 */
      88    if (uy == 0x00000000)
      89      {
      90        if (dy == 0x00000000)
      91  	{
      92  	  if ((ux & 0x80000000) == 0x00000000)
      93  	    return 0;
      94  	  else
      95  	    return opi.d;
      96  	}
      97      }
      98    else if (uy == 0x80000000)
      99      {
     100        if (dy == 0x00000000)
     101  	{
     102  	  if ((ux & 0x80000000) == 0x00000000)
     103  	    return -0.0;
     104  	  else
     105  	    return mopi.d;
     106  	}
     107      }
     108  
     109    /* x=+-0 */
     110    if (x == 0)
     111      {
     112        if ((uy & 0x80000000) == 0x00000000)
     113  	return hpi.d;
     114        else
     115  	return mhpi.d;
     116      }
     117  
     118    /* x=+-INF */
     119    if (ux == 0x7ff00000)
     120      {
     121        if (dx == 0x00000000)
     122  	{
     123  	  if (uy == 0x7ff00000)
     124  	    {
     125  	      if (dy == 0x00000000)
     126  		return qpi.d;
     127  	    }
     128  	  else if (uy == 0xfff00000)
     129  	    {
     130  	      if (dy == 0x00000000)
     131  		return mqpi.d;
     132  	    }
     133  	  else
     134  	    {
     135  	      if ((uy & 0x80000000) == 0x00000000)
     136  		return 0;
     137  	      else
     138  		return -0.0;
     139  	    }
     140  	}
     141      }
     142    else if (ux == 0xfff00000)
     143      {
     144        if (dx == 0x00000000)
     145  	{
     146  	  if (uy == 0x7ff00000)
     147  	    {
     148  	      if (dy == 0x00000000)
     149  		return tqpi.d;
     150  	    }
     151  	  else if (uy == 0xfff00000)
     152  	    {
     153  	      if (dy == 0x00000000)
     154  		return mtqpi.d;
     155  	    }
     156  	  else
     157  	    {
     158  	      if ((uy & 0x80000000) == 0x00000000)
     159  		return opi.d;
     160  	      else
     161  		return mopi.d;
     162  	    }
     163  	}
     164      }
     165  
     166    /* y=+-INF */
     167    if (uy == 0x7ff00000)
     168      {
     169        if (dy == 0x00000000)
     170  	return hpi.d;
     171      }
     172    else if (uy == 0xfff00000)
     173      {
     174        if (dy == 0x00000000)
     175  	return mhpi.d;
     176      }
     177  
     178    SET_RESTORE_ROUND (FE_TONEAREST);
     179    /* either x/y or y/x is very close to zero */
     180    ax = (x < 0) ? -x : x;
     181    ay = (y < 0) ? -y : y;
     182    de = (uy & 0x7ff00000) - (ux & 0x7ff00000);
     183    if (de >= ep)
     184      {
     185        return ((y > 0) ? hpi.d : mhpi.d);
     186      }
     187    else if (de <= em)
     188      {
     189        if (x > 0)
     190  	{
     191  	  double ret;
     192  	  z = ay / ax;
     193  	  ret = signArctan2 (y, z);
     194  	  if (fabs (ret) < DBL_MIN)
     195  	    {
     196  	      double vret = ret ? ret : DBL_MIN;
     197  	      double force_underflow = vret * vret;
     198  	      math_force_eval (force_underflow);
     199  	    }
     200  	  return ret;
     201  	}
     202        else
     203  	{
     204  	  return ((y > 0) ? opi.d : mopi.d);
     205  	}
     206      }
     207  
     208    /* if either x or y is extremely close to zero, scale abs(x), abs(y). */
     209    if (ax < twom500.d || ay < twom500.d)
     210      {
     211        ax *= two500.d;
     212        ay *= two500.d;
     213      }
     214  
     215    /* Likewise for large x and y.  */
     216    if (ax > two500.d || ay > two500.d)
     217      {
     218        ax *= twom500.d;
     219        ay *= twom500.d;
     220      }
     221  
     222    /* x,y which are neither special nor extreme */
     223    if (ay < ax)
     224      {
     225        u = ay / ax;
     226        EMULV (ax, u, v, vv);
     227        du = ((ay - v) - vv) / ax;
     228      }
     229    else
     230      {
     231        u = ax / ay;
     232        EMULV (ay, u, v, vv);
     233        du = ((ax - v) - vv) / ay;
     234      }
     235  
     236    if (x > 0)
     237      {
     238        /* (i)   x>0, abs(y)< abs(x):  atan(ay/ax) */
     239        if (ay < ax)
     240  	{
     241  	  if (u < inv16.d)
     242  	    {
     243  	      v = u * u;
     244  
     245  	      zz = du + u * v * (d3.d
     246  				 + v * (d5.d
     247  					+ v * (d7.d
     248  					       + v * (d9.d
     249  						      + v * (d11.d
     250  							     + v * d13.d)))));
     251  
     252  	      z = u + zz;
     253  	      /* Max ULP is 0.504.  */
     254  	      return signArctan2 (y, z);
     255  	    }
     256  
     257  	  i = (TWO52 + 256 * u) - TWO52;
     258  	  i -= 16;
     259  	  t3 = u - cij[i][0].d;
     260  	  EADD (t3, du, v, dv);
     261  	  t1 = cij[i][1].d;
     262  	  t2 = cij[i][2].d;
     263  	  zz = v * t2 + (dv * t2
     264  			 + v * v * (cij[i][3].d
     265  				    + v * (cij[i][4].d
     266  					   + v * (cij[i][5].d
     267  						  + v * cij[i][6].d))));
     268  	  z = t1 + zz;
     269  	  /* Max ULP is 0.56.  */
     270  	  return signArctan2 (y, z);
     271  	}
     272  
     273        /* (ii)  x>0, abs(x)<=abs(y):  pi/2-atan(ax/ay) */
     274        if (u < inv16.d)
     275  	{
     276  	  v = u * u;
     277  	  zz = u * v * (d3.d
     278  			+ v * (d5.d
     279  			       + v * (d7.d
     280  				      + v * (d9.d
     281  					     + v * (d11.d
     282  						    + v * d13.d)))));
     283  	  ESUB (hpi.d, u, t2, cor);
     284  	  t3 = ((hpi1.d + cor) - du) - zz;
     285  	  z = t2 + t3;
     286  	  /* Max ULP is 0.501.  */
     287  	  return signArctan2 (y, z);
     288  	}
     289  
     290        i = (TWO52 + 256 * u) - TWO52;
     291        i -= 16;
     292        v = (u - cij[i][0].d) + du;
     293  
     294        zz = hpi1.d - v * (cij[i][2].d
     295  			 + v * (cij[i][3].d
     296  				+ v * (cij[i][4].d
     297  				       + v * (cij[i][5].d
     298  					      + v * cij[i][6].d))));
     299        t1 = hpi.d - cij[i][1].d;
     300        z = t1 + zz;
     301        /* Max ULP is 0.503.  */
     302        return signArctan2 (y, z);
     303      }
     304  
     305    /* (iii) x<0, abs(x)< abs(y):  pi/2+atan(ax/ay) */
     306    if (ax < ay)
     307      {
     308        if (u < inv16.d)
     309  	{
     310  	  v = u * u;
     311  	  zz = u * v * (d3.d
     312  			+ v * (d5.d
     313  			       + v * (d7.d
     314  				      + v * (d9.d
     315  					     + v * (d11.d + v * d13.d)))));
     316  	  EADD (hpi.d, u, t2, cor);
     317  	  t3 = ((hpi1.d + cor) + du) + zz;
     318  	  z = t2 + t3;
     319  	  /* Max ULP is 0.501.  */
     320  	  return signArctan2 (y, z);
     321  	}
     322  
     323        i = (TWO52 + 256 * u) - TWO52;
     324        i -= 16;
     325        v = (u - cij[i][0].d) + du;
     326        zz = hpi1.d + v * (cij[i][2].d
     327  			 + v * (cij[i][3].d
     328  				+ v * (cij[i][4].d
     329  				       + v * (cij[i][5].d
     330  					      + v * cij[i][6].d))));
     331        t1 = hpi.d + cij[i][1].d;
     332        z = t1 + zz;
     333        /* Max ULP is 0.503.  */
     334        return signArctan2 (y, z);
     335      }
     336  
     337    /* (iv)  x<0, abs(y)<=abs(x):  pi-atan(ax/ay) */
     338    if (u < inv16.d)
     339      {
     340        v = u * u;
     341        zz = u * v * (d3.d
     342  		    + v * (d5.d
     343  			   + v * (d7.d
     344  				  + v * (d9.d + v * (d11.d + v * d13.d)))));
     345        ESUB (opi.d, u, t2, cor);
     346        t3 = ((opi1.d + cor) - du) - zz;
     347        z = t2 + t3;
     348        /* Max ULP is 0.501.  */
     349        return signArctan2 (y, z);
     350      }
     351  
     352    i = (TWO52 + 256 * u) - TWO52;
     353    i -= 16;
     354    v = (u - cij[i][0].d) + du;
     355    zz = opi1.d - v * (cij[i][2].d
     356  		     + v * (cij[i][3].d
     357  			    + v * (cij[i][4].d
     358  				   + v * (cij[i][5].d + v * cij[i][6].d))));
     359    t1 = opi.d - cij[i][1].d;
     360    z = t1 + zz;
     361    /* Max ULP is 0.502.  */
     362    return signArctan2 (y, z);
     363  }
     364  
     365  #ifndef __ieee754_atan2
     366  libm_alias_finite (__ieee754_atan2, __atan2)
     367  #endif